Posts

Showing posts from April 3, 2019

Pichanaqui (distrito)

Image
Pichanaqui é um distrito da província de Chanchamayo, localizado do Departamento de Junín, Peru. [ 1 ] Referências ↑ Patrick, Huanca Quea Froilan Edwin; Llanos Solorzano Jose Antonio;Navarro Montes Carlos Arturo;Quispe Fernandez Ezio Ivan;Rivas Fuentes Rivera Fernando Martin;Velasquez Davila Jimmy. «Sistema de Consulta de Centros Poblados». sige.inei.gob.pe . Consultado em 7 de maio de 2018   Portal do Peru Este artigo sobre geografia do Peru é um esboço. Você pode ajudar a Wikipédia expandindo-o . v d e Província de Chanchamayo Capital Chanchamayo Distritos Chanchamayo • Perené  • Pichanaqui • San Luis de Shuaro  • San Ramon  • Vitoc • Lista de distritos da região de Junín This page is only for reference, If you need detailed information, please check here

Christian Catholic Church

.mw-parser-output .infobox{border:1px solid #aaa;background-color:#f9f9f9;color:black;margin:.5em 0 .5em 1em;padding:.2em;float:right;clear:right;width:22em;text-align:left;font-size:88%;line-height:1.6em}.mw-parser-output .infobox td,.mw-parser-output .infobox th{vertical-align:top;padding:0 .2em}.mw-parser-output .infobox caption{font-size:larger}.mw-parser-output .infobox.bordered{border-collapse:collapse}.mw-parser-output .infobox.bordered td,.mw-parser-output .infobox.bordered th{border:1px solid #aaa}.mw-parser-output .infobox.bordered .borderless td,.mw-parser-output .infobox.bordered .borderless th{border:0}.mw-parser-output .infobox-showbutton .mw-collapsible-text{color:inherit}.mw-parser-output .infobox.bordered .mergedtoprow td,.mw-parser-output .infobox.bordered .mergedtoprow th{border:0;border-top:1px solid #aaa;border-right:1px solid #aaa}.mw-parser-output .infobox.bordered .mergedrow td,.mw-parser-output .infobox.bordered .mergedrow th{border:0;border-right:1px solid ...

Equivalent condition for a cardinal number to be of cofinality $aleph_0$

Image
0 $begingroup$ Let cf $(alpha)$ denotes the co-final of the transfinite cardinal number $alpha.$ For every successor cardinal $alpha$ we have cf $(alpha)=alphaneq aleph_0.$ Thus cf $(alpha) = aleph_0,$ implies $alpha$ is a limit cardinal. We can find some limit cardinal number $alpha,$ for example $alpha=aleph_{omega}$ with cf $(alpha)=aleph_0.$ Now, can we fined all (limit) cardinal numbers which satisfies cf $(alpha)=aleph_0?$ set-theory share | cite | improve this question edited Jan 9 at 8:22 Ali Bayati asked ...