Posts

Showing posts from February 4, 2019

Baptiste Lake (sjö i Kanada, Ontario, Hastings County)

Image
.mw-parser-output table.ambox{margin:0 10%;border-collapse:collapse;background:#fbfbfb;border:1px solid #aaa;border-left:10px solid #608ec2}.mw-parser-output table.ambox th.ambox-text,.mw-parser-output table.ambox td.ambox-text{padding:.25em .5em;width:100%}.mw-parser-output table.ambox td.ambox-image{padding:2px 0 2px .5em;text-align:center;vertical-align:middle}.mw-parser-output table.ambox td.ambox-imageright{padding:2px 4px 2px 0;text-align:center;vertical-align:middle}.mw-parser-output table.ambox-notice{border-left:10px solid #608ec2}.mw-parser-output table.ambox-delete,.mw-parser-output table.ambox-serious{border-left:10px solid #b22222}.mw-parser-output table.ambox-content{border-left:10px solid #f28500}.mw-parser-output table.ambox-style{border-left:10px solid #f4c430}.mw-parser-output table.ambox-merge{border-left:10px solid #9932cc}.mw-parser-output table.ambox-protection{border-left:10px solid #bba}.mw-parser-output .ambox+.ambox,.mw-parser-output .topbox+.ambox,.mw-pars

$A$, a linearly independent subset of a subspace $S$; $xnotin S$; show $Acup{x}$ is linearly independent

Image
0 $begingroup$ Let $A$ be a linearly independent subset of a subspace $S$ . If $xnotin S$ , show that $Acup{x}$ is linearly independent. Theorem : Let $B$ be linearly independent and $ynotin B$ . Then, $Bcup{y}$ is linearly dependent iff $yin Span(B)$ . Using this theorem, I get that- $A$ is linearly independent and $xnotin SRightarrow xnotin A$ . So, $Acup{x}$ is linearly independent iff $xnotin Sp(A)$ . Therefore, it should be enough to show that- $Asubseteq S$ (where, $A$ is linearly independent) and $xnotin S$ $Rightarrow xnotin Sp(A)$ $_{...(1)}$ $Rightarrow Acup{x}$ is linearly independent $_{...(2)}$ My question is, if my approach is correct how should I prove $(1)$ because $(2)$ obviously follows from there. Or is my approach incorrect? [There are similar questions on the site, bu