Posts

Showing posts from December 1, 2018

Taiwan

Image
Den här artikeln handlar om den nutida staten. För ön, se Taiwan (ö). För andra betydelser, se Taiwan (olika betydelser). .mw-parser-output .infobox{border:1px solid #aaa;background-color:#f9f9f9;color:black;margin:.5em 0 .5em 1em;padding:.2em;float:right;clear:right;width:22em;text-align:left;font-size:88%;line-height:1.6em}.mw-parser-output .infobox td,.mw-parser-output .infobox th{vertical-align:top;padding:0 .2em}.mw-parser-output .infobox caption{font-size:larger}.mw-parser-output .infobox.bordered{border-collapse:collapse}.mw-parser-output .infobox.bordered td,.mw-parser-output .infobox.bordered th{border:1px solid #aaa}.mw-parser-output .infobox.bordered .borderless td,.mw-parser-output .infobox.bordered .borderless th{border:0}.mw-parser-output .infobox.bordered .mergedtoprow td,.mw-parser-output .infobox.bordered .mergedtoprow th{border:0;border-top:1px solid #aaa;border-right:1px solid #aaa}.mw-parser-output .infobox.bordered .mergedrow td,.mw-parser-output .infobox.b

Solving Trignometric integral with the aid of residues.

Image
up vote 1 down vote favorite If $alpha, beta, gamma$ are real numbers such that $alpha^2> beta^2+gamma^2$ show that $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = frac{2 pi}{sqrt{alpha^2-beta^2-gamma^2}}$$ My attempt: change the variable $z = e^{itheta}$ , i.e. $cos theta = frac{z+z^{-1}}{2}, sin theta = -ifrac{z-z^{-1}}{2}$ in the given integral to obtain $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = 2int_{C} frac{-iz^{-1} times z, dz}{2alpha z+beta(z^2+1)-igamma(z^2-1)} = 2int_{C} frac{-i, dz}{z^2(beta-igamma)+2alpha z+beta+i gamma} $$ where $C$ is unit circle. Further, from above integral we get $$= frac{-2i}{beta-igamma}int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} $$