Posts

Showing posts from February 5, 2019

M/S Sigyn

Image
.mw-parser-output .infobox{border:1px solid #aaa;background-color:#f9f9f9;color:black;margin:.5em 0 .5em 1em;padding:.2em;float:right;clear:right;width:22em;text-align:left;font-size:88%;line-height:1.6em}.mw-parser-output .infobox td,.mw-parser-output .infobox th{vertical-align:top;padding:0 .2em}.mw-parser-output .infobox caption{font-size:larger}.mw-parser-output .infobox.bordered{border-collapse:collapse}.mw-parser-output .infobox.bordered td,.mw-parser-output .infobox.bordered th{border:1px solid #aaa}.mw-parser-output .infobox.bordered .borderless td,.mw-parser-output .infobox.bordered .borderless th{border:0}.mw-parser-output .infobox-showbutton .mw-collapsible-text{color:inherit}.mw-parser-output .infobox.bordered .mergedtoprow td,.mw-parser-output .infobox.bordered .mergedtoprow th{border:0;border-top:1px solid #aaa;border-right:1px solid #aaa}.mw-parser-output .infobox.bordered .mergedrow td,.mw-parser-output .infobox.bordered .mergedrow th{border:0;border-right:1px solid

IMO problem 1961, different proofs of the Weitzenbock inequality

Image
7 3 I'm collecting proof's for Weitzenbock inequality, i made three proofs for this, See these proofs below(Whoever has a more cool proof please share). Let a, b, c be the sides of the triangle and A its area, prove that: $$a^{2}+b^{2}+c^{2}geq4sqrt{3}A$$ $$Proof 1$$ Let $R$ the circunradius.Suppose, by contradiction, that: begin{equation} frac{1}{a}+frac{1}{b}+frac{1}{c}<frac{3}{Rsqrt{3}} tag{1} end{equation} Using that: begin{equation} a+b+cleq 3Rsqrt{3} tag{2} end{equation} Multiplying (1) e (2): $$(a+b+c)left(frac{1}{a}+frac{1}{b}+frac{1}{c}right)<9$$ What is absurd, this can be seen using the inequality that relates the arithmetic mean to the harmonic mean, or by the inequality of Cauchy-Schwarz. From where we conclude: begin{equation} frac{1}{a}+frac{1}{b}+frac{1}{c}geqfrac{3}{R