Posts

Showing posts from December 3, 2018

Improper integral with a parameter $int_{0}^{infty} e^{-cx^{2}}sin(tx)dx$

Image
up vote 2 down vote favorite I need to evaluate the following integral. $$int_{0}^{infty} e^{-cx^{2}}sin(tx) ~dx$$ Here's what I've done so far. $$I(t) = int_{0}^{infty} e^{-cx^{2}}sin(tx)~dx$$ Then differentiating under the integral sign I get: $$I'(t) = int_{0}^{infty} xe^{-cx^{2}}cos(tx)~dx$$ This is pretty straightforward and integrating by parts I get this: $$I '(t) =frac{1}{2c}+frac{t}{2c}int_{0}^{infty} e^{-cx^{2}}sin(tx)~dx$$ which can be written as $$I'(t) = frac{1}{2c}+frac{t}{2c}I(t)$$ Rearranging I end up with the following differential equation: $$I'(t)+frac{t}{2c}I(t)=frac{1}{2c}$$ When I try to solve this I end up with a different result than what an online calculator got: $$-dfrac{sqrt{{pi}}mathrm{i}mathrm{e}^{-frac{t^2}{4c}}operatorname{erf}left(frac{mathrm{i}t}{2sqrt{c

Puumala

Image
.mw-parser-output .infobox{border:1px solid #aaa;background-color:#f9f9f9;color:black;margin:.5em 0 .5em 1em;padding:.2em;float:right;clear:right;width:22em;text-align:left;font-size:88%;line-height:1.6em}.mw-parser-output .infobox td,.mw-parser-output .infobox th{vertical-align:top;padding:0 .2em}.mw-parser-output .infobox caption{font-size:larger}.mw-parser-output .infobox.bordered{border-collapse:collapse}.mw-parser-output .infobox.bordered td,.mw-parser-output .infobox.bordered th{border:1px solid #aaa}.mw-parser-output .infobox.bordered .borderless td,.mw-parser-output .infobox.bordered .borderless th{border:0}.mw-parser-output .infobox.bordered .mergedtoprow td,.mw-parser-output .infobox.bordered .mergedtoprow th{border:0;border-top:1px solid #aaa;border-right:1px solid #aaa}.mw-parser-output .infobox.bordered .mergedrow td,.mw-parser-output .infobox.bordered .mergedrow th{border:0;border-right:1px solid #aaa}.mw-parser-output .infobox.geography{border:1px solid #ccd2d9;text-a