Posts

Showing posts from March 29, 2019

Mick Taylor

Image
.mw-parser-output .infobox{border:1px solid #aaa;background-color:#f9f9f9;color:black;margin:.5em 0 .5em 1em;padding:.2em;float:right;clear:right;width:22em;text-align:left;font-size:88%;line-height:1.6em}.mw-parser-output .infobox td,.mw-parser-output .infobox th{vertical-align:top;padding:0 .2em}.mw-parser-output .infobox caption{font-size:larger}.mw-parser-output .infobox.bordered{border-collapse:collapse}.mw-parser-output .infobox.bordered td,.mw-parser-output .infobox.bordered th{border:1px solid #aaa}.mw-parser-output .infobox.bordered .borderless td,.mw-parser-output .infobox.bordered .borderless th{border:0}.mw-parser-output .infobox-showbutton .mw-collapsible-text{color:inherit}.mw-parser-output .infobox.bordered .mergedtoprow td,.mw-parser-output .infobox.bordered .mergedtoprow th{border:0;border-top:1px solid #aaa;border-right:1px solid #aaa}.mw-parser-output .infobox.bordered .mergedrow td,.mw-parser-output .infobox.bordered .mergedrow th{border:0;border-right:1px solid

Computing the Laplacian in Polar Coordinates [duplicate]

Image
3 $begingroup$ This question already has an answer here: Computing second partial derivative with polar coordinates 1 answer Similar questions have been asked on this site but none of them seemed to help me. I'm asked to compute the Laplacian $$frac{partial^2}{partial x^2}+frac{partial^2}{partial y^2}$$ in terms of polar coordinates. I did do it, but I don't understand why what I did is correct, and I don't understand the more "brute force" way to do it at all. Here is what I did: I calculated $frac{partial}{partial r}$ and $frac{partial}{partial theta}$ in terms of $r,$ $theta,$ $frac{partial}{partial x}$ and $frac{partial}{partial y}.$ This gave me a system of linear equati