Posts

Showing posts from January 12, 2019

Nåd (teologi)

Image
.mw-parser-output table.ambox{margin:0 10%;border-collapse:collapse;background:#fbfbfb;border:1px solid #aaa;border-left:10px solid #608ec2}.mw-parser-output table.ambox th.ambox-text,.mw-parser-output table.ambox td.ambox-text{padding:.25em .5em;width:100%}.mw-parser-output table.ambox td.ambox-image{padding:2px 0 2px .5em;text-align:center;vertical-align:middle}.mw-parser-output table.ambox td.ambox-imageright{padding:2px 4px 2px 0;text-align:center;vertical-align:middle}.mw-parser-output table.ambox-notice{border-left:10px solid #608ec2}.mw-parser-output table.ambox-delete,.mw-parser-output table.ambox-serious{border-left:10px solid #b22222}.mw-parser-output table.ambox-content{border-left:10px solid #f28500}.mw-parser-output table.ambox-style{border-left:10px solid #f4c430}.mw-parser-output table.ambox-merge{border-left:10px solid #9932cc}.mw-parser-output table.ambox-protection{border-left:10px solid #bba}.mw-parser-output .ambox+.ambox,.mw-parser-output .topbox+.ambox,.mw-pars

Compound Binomial - Exponential process

Image
1 $begingroup$ Problem: I have a sum of $N$ random variables $X_i$ , where $N$ is distributed according to a binomial distribution and the $X_i$ are independent and identically distributed according to an exponential distribution. I would like to get the pdf of the sum $$ Y_N = X_1 + X_2 + dots + X_N. $$ If I write the pmf of $N$ as $$ p_n = {N choose n} p^n q^{N-n}$$ and the pdf of the $X_i$ as $$ f(x) = lambda e^{-lambda x},$$ How can I get the pdf $p(y)$ of $Y_N$ ? Attempt: I gather this is called a compound process. I read about it somewhat in Feller: the section is "Sum of a Random Number of Random Variables", but he does not mix discrete and continuous random variables. I think this is just a discrete time random walk where the steps are exponentially distributed. I think I