Posts

Showing posts from March 9, 2019

Kūh-e Rashīd Koshteh

Image
.mw-parser-output table.ambox{margin:0 10%;border-collapse:collapse;background:#fbfbfb;border:1px solid #aaa;border-left:10px solid #608ec2}.mw-parser-output table.ambox th.ambox-text,.mw-parser-output table.ambox td.ambox-text{padding:.25em .5em;width:100%}.mw-parser-output table.ambox td.ambox-image{padding:2px 0 2px .5em;text-align:center;vertical-align:middle}.mw-parser-output table.ambox td.ambox-imageright{padding:2px 4px 2px 0;text-align:center;vertical-align:middle}.mw-parser-output table.ambox-notice{border-left:10px solid #608ec2}.mw-parser-output table.ambox-delete,.mw-parser-output table.ambox-serious{border-left:10px solid #b22222}.mw-parser-output table.ambox-content{border-left:10px solid #f28500}.mw-parser-output table.ambox-style{border-left:10px solid #f4c430}.mw-parser-output table.ambox-merge{border-left:10px solid #9932cc}.mw-parser-output table.ambox-protection{border-left:10px solid #bba}.mw-parser-output .ambox+.ambox,.mw-parser-output .topbox+.ambox,.mw-pars

Concerning this sum $sum_{k=1}^{infty}{2k choose k}^2 4^{-2k}cdot frac{1}{(ak)^3-ak}$

Image
1 3 $begingroup$ I was looking at this Ramanujan phi-Function Let: $$R(a)=sum_{k=1}^{infty}frac{1}{(ak)^3-ak}tag1$$ and this paper of the form, $$sum_{k=1}^{infty}frac{{2k choose k}}{4^k}tag2$$ and $$sum_{k=1}^{infty}left[frac{{2k choose k}}{4^k}right]^2tag 3$$ By combining them together we have $$S(a)=sum_{k=1}^{infty}frac{{2k choose k}}{4^k}cdot frac{1}{(ak)^3-ak}tag4$$ and $$T(a)=sum_{k=1}^{infty}left[frac{{2k choose k}}{4^k}right]^2cdot frac{1}{(ak)^3-ak}tag5$$ The conjectured closed form for $(4)$ and $(5)$ , where $a=2$ are $$S(2)=sum_{k=1}^{infty}frac{{2k choose k}}{4^k}cdot frac{1}{(2k)^3-2k}=frac{pi}{4}-ln(2)tag6$$ and $$T(2)=sum_{k=1}^{infty}left[frac{{2k choose k}}{4^k}right]^2cdot frac{1}{(2k)^3-2k}=frac{6G-piln(4)-1}{pi}tag7$$ Where G is the Catalan's constant. How can