Frattini subgroup of a finite group
up vote
6
down vote
favorite
I have been looking for information about the Frattini subgroup of a finite group. Almost all the books dealing with this topic discuss this subgroup for $p$-groups.
I am actually willing to discuss the following questions:
Let $G$ be a finite group. Is the Frattini subgroup of $G$ abelian?
Why is the order of the Frattini factor divisible by each prime divisor of $|G|$?
group-theory reference-request finite-groups
add a comment |
up vote
6
down vote
favorite
I have been looking for information about the Frattini subgroup of a finite group. Almost all the books dealing with this topic discuss this subgroup for $p$-groups.
I am actually willing to discuss the following questions:
Let $G$ be a finite group. Is the Frattini subgroup of $G$ abelian?
Why is the order of the Frattini factor divisible by each prime divisor of $|G|$?
group-theory reference-request finite-groups
No to the first question. Counterexample? Choose a finite non-abelian $;p$-group with non-abelian maximal proper subgroup. For the second question: for any such prime divisor there is a maximal subgroup divisible by that prime...
– DonAntonio
Apr 23 '14 at 14:26
and it is enough to find only one maximal subgroup with order divisible by the prime?
– user145150
Apr 23 '14 at 14:29
for get that: I misread that last part since, obviously, if the Frattini subgroup is trivial then it cannot be divided any any prime...yet you're talking of the Frattini factor...do you mean the quotient $;G/Phi(G);$ ?
– DonAntonio
Apr 23 '14 at 14:37
do you recommend any reference?
– user145150
Apr 23 '14 at 14:44
add a comment |
up vote
6
down vote
favorite
up vote
6
down vote
favorite
I have been looking for information about the Frattini subgroup of a finite group. Almost all the books dealing with this topic discuss this subgroup for $p$-groups.
I am actually willing to discuss the following questions:
Let $G$ be a finite group. Is the Frattini subgroup of $G$ abelian?
Why is the order of the Frattini factor divisible by each prime divisor of $|G|$?
group-theory reference-request finite-groups
I have been looking for information about the Frattini subgroup of a finite group. Almost all the books dealing with this topic discuss this subgroup for $p$-groups.
I am actually willing to discuss the following questions:
Let $G$ be a finite group. Is the Frattini subgroup of $G$ abelian?
Why is the order of the Frattini factor divisible by each prime divisor of $|G|$?
group-theory reference-request finite-groups
group-theory reference-request finite-groups
edited Dec 4 at 0:31
the_fox
2,3191430
2,3191430
asked Apr 23 '14 at 14:22
user145150
454
454
No to the first question. Counterexample? Choose a finite non-abelian $;p$-group with non-abelian maximal proper subgroup. For the second question: for any such prime divisor there is a maximal subgroup divisible by that prime...
– DonAntonio
Apr 23 '14 at 14:26
and it is enough to find only one maximal subgroup with order divisible by the prime?
– user145150
Apr 23 '14 at 14:29
for get that: I misread that last part since, obviously, if the Frattini subgroup is trivial then it cannot be divided any any prime...yet you're talking of the Frattini factor...do you mean the quotient $;G/Phi(G);$ ?
– DonAntonio
Apr 23 '14 at 14:37
do you recommend any reference?
– user145150
Apr 23 '14 at 14:44
add a comment |
No to the first question. Counterexample? Choose a finite non-abelian $;p$-group with non-abelian maximal proper subgroup. For the second question: for any such prime divisor there is a maximal subgroup divisible by that prime...
– DonAntonio
Apr 23 '14 at 14:26
and it is enough to find only one maximal subgroup with order divisible by the prime?
– user145150
Apr 23 '14 at 14:29
for get that: I misread that last part since, obviously, if the Frattini subgroup is trivial then it cannot be divided any any prime...yet you're talking of the Frattini factor...do you mean the quotient $;G/Phi(G);$ ?
– DonAntonio
Apr 23 '14 at 14:37
do you recommend any reference?
– user145150
Apr 23 '14 at 14:44
No to the first question. Counterexample? Choose a finite non-abelian $;p$-group with non-abelian maximal proper subgroup. For the second question: for any such prime divisor there is a maximal subgroup divisible by that prime...
– DonAntonio
Apr 23 '14 at 14:26
No to the first question. Counterexample? Choose a finite non-abelian $;p$-group with non-abelian maximal proper subgroup. For the second question: for any such prime divisor there is a maximal subgroup divisible by that prime...
– DonAntonio
Apr 23 '14 at 14:26
and it is enough to find only one maximal subgroup with order divisible by the prime?
– user145150
Apr 23 '14 at 14:29
and it is enough to find only one maximal subgroup with order divisible by the prime?
– user145150
Apr 23 '14 at 14:29
for get that: I misread that last part since, obviously, if the Frattini subgroup is trivial then it cannot be divided any any prime...yet you're talking of the Frattini factor...do you mean the quotient $;G/Phi(G);$ ?
– DonAntonio
Apr 23 '14 at 14:37
for get that: I misread that last part since, obviously, if the Frattini subgroup is trivial then it cannot be divided any any prime...yet you're talking of the Frattini factor...do you mean the quotient $;G/Phi(G);$ ?
– DonAntonio
Apr 23 '14 at 14:37
do you recommend any reference?
– user145150
Apr 23 '14 at 14:44
do you recommend any reference?
– user145150
Apr 23 '14 at 14:44
add a comment |
2 Answers
2
active
oldest
votes
up vote
10
down vote
accepted
Here is a proof that, for a finite group $G$, $|G/Phi(G)|$ is divisible by all primes $p$ dividing $|G|$. It uses the Schur-Zassenhaus Theorem. I don't know whether that can be avoided.
First note that each Sylow $p$-subgroup $P$ of $Phi(G)$ is normal in $G$. (So, in particular, $Phi(G)$ is nilpotent.) To see that, we have $G = Phi(G)N_G(P)$ by the Frattini Argument, and then by the fact that $Phi(G)$ consists of the non-generators of $G$, we have $G = N_G(P)$.
Now if there is a prime $p$ dividing $|G|$ but not dividing $|G/Phi(G)|$, then $Phi(G)$ contains a Sylow $p$-subgroup $P$ of $G$ and $P unlhd G$. So, by the Schur-Zassenhaus Theorem, $P$ has a complement $H$ in $G$. Let $M$ be a maximal subgroup of $G$ containing $H$. Then $p$ divides $|G:M|$ and hence $p$ divides $|G/Phi(G)|$, contradiction.
Thanks, I did not find any reference for the proof
– user145150
Apr 23 '14 at 14:54
add a comment |
up vote
5
down vote
To find a finite group with non-abelian Frattini subgroup, you'll need a group with a non-abelian maximal subgroup, but that does not suffice. The dihedral group of order 16 has a maximal subgroup isomorphic to the dihedral group of order 8, but the Frattini subgroup of a non-cyclic group of order 16 has order at most 4, so is abelian (it is Klein 4 in this case).
The smallest examples have order 64. One particular example is given by a matrix group:$$G=leftlangle begin{bmatrix} 0 & 1 & 0 \ 1 & 2 & 0 \ 0 & 0 & 1 end{bmatrix},
begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 end{bmatrix} mod 4rightrangle leq operatorname{GL}(2,mathbb{Z}/4mathbb{Z})$$ which is a semi-direct product of $C_4$ acting on $C_4 times C_4$. Its Frattini subgroup is isomorphic to $C_2 times D_8$. The only other possibility for a non-abelian Frattini subgroup of a group of order 64 is $C_2 times Q_8$.
One reason books emphasize Frattini subgroups of $p$-groups is that they have a very nice definition there: $Phi(G) = G^p [G,G]$. Hence calculations and theorems are much easier. For solvable groups, there is still some research into embedding properties related to the Frattini subgroup, and for non-solvable groups, there are significant questions left open.
I gave an answer you might be interested in, describing the groups that can occur as Frattini subgroups. In particular, some non-abelian groups are on the list. :-)
so if I could construct the frattini subgroup for a finite group, would that be something?
– user145150
Apr 23 '14 at 15:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f765995%2ffrattini-subgroup-of-a-finite-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
10
down vote
accepted
Here is a proof that, for a finite group $G$, $|G/Phi(G)|$ is divisible by all primes $p$ dividing $|G|$. It uses the Schur-Zassenhaus Theorem. I don't know whether that can be avoided.
First note that each Sylow $p$-subgroup $P$ of $Phi(G)$ is normal in $G$. (So, in particular, $Phi(G)$ is nilpotent.) To see that, we have $G = Phi(G)N_G(P)$ by the Frattini Argument, and then by the fact that $Phi(G)$ consists of the non-generators of $G$, we have $G = N_G(P)$.
Now if there is a prime $p$ dividing $|G|$ but not dividing $|G/Phi(G)|$, then $Phi(G)$ contains a Sylow $p$-subgroup $P$ of $G$ and $P unlhd G$. So, by the Schur-Zassenhaus Theorem, $P$ has a complement $H$ in $G$. Let $M$ be a maximal subgroup of $G$ containing $H$. Then $p$ divides $|G:M|$ and hence $p$ divides $|G/Phi(G)|$, contradiction.
Thanks, I did not find any reference for the proof
– user145150
Apr 23 '14 at 14:54
add a comment |
up vote
10
down vote
accepted
Here is a proof that, for a finite group $G$, $|G/Phi(G)|$ is divisible by all primes $p$ dividing $|G|$. It uses the Schur-Zassenhaus Theorem. I don't know whether that can be avoided.
First note that each Sylow $p$-subgroup $P$ of $Phi(G)$ is normal in $G$. (So, in particular, $Phi(G)$ is nilpotent.) To see that, we have $G = Phi(G)N_G(P)$ by the Frattini Argument, and then by the fact that $Phi(G)$ consists of the non-generators of $G$, we have $G = N_G(P)$.
Now if there is a prime $p$ dividing $|G|$ but not dividing $|G/Phi(G)|$, then $Phi(G)$ contains a Sylow $p$-subgroup $P$ of $G$ and $P unlhd G$. So, by the Schur-Zassenhaus Theorem, $P$ has a complement $H$ in $G$. Let $M$ be a maximal subgroup of $G$ containing $H$. Then $p$ divides $|G:M|$ and hence $p$ divides $|G/Phi(G)|$, contradiction.
Thanks, I did not find any reference for the proof
– user145150
Apr 23 '14 at 14:54
add a comment |
up vote
10
down vote
accepted
up vote
10
down vote
accepted
Here is a proof that, for a finite group $G$, $|G/Phi(G)|$ is divisible by all primes $p$ dividing $|G|$. It uses the Schur-Zassenhaus Theorem. I don't know whether that can be avoided.
First note that each Sylow $p$-subgroup $P$ of $Phi(G)$ is normal in $G$. (So, in particular, $Phi(G)$ is nilpotent.) To see that, we have $G = Phi(G)N_G(P)$ by the Frattini Argument, and then by the fact that $Phi(G)$ consists of the non-generators of $G$, we have $G = N_G(P)$.
Now if there is a prime $p$ dividing $|G|$ but not dividing $|G/Phi(G)|$, then $Phi(G)$ contains a Sylow $p$-subgroup $P$ of $G$ and $P unlhd G$. So, by the Schur-Zassenhaus Theorem, $P$ has a complement $H$ in $G$. Let $M$ be a maximal subgroup of $G$ containing $H$. Then $p$ divides $|G:M|$ and hence $p$ divides $|G/Phi(G)|$, contradiction.
Here is a proof that, for a finite group $G$, $|G/Phi(G)|$ is divisible by all primes $p$ dividing $|G|$. It uses the Schur-Zassenhaus Theorem. I don't know whether that can be avoided.
First note that each Sylow $p$-subgroup $P$ of $Phi(G)$ is normal in $G$. (So, in particular, $Phi(G)$ is nilpotent.) To see that, we have $G = Phi(G)N_G(P)$ by the Frattini Argument, and then by the fact that $Phi(G)$ consists of the non-generators of $G$, we have $G = N_G(P)$.
Now if there is a prime $p$ dividing $|G|$ but not dividing $|G/Phi(G)|$, then $Phi(G)$ contains a Sylow $p$-subgroup $P$ of $G$ and $P unlhd G$. So, by the Schur-Zassenhaus Theorem, $P$ has a complement $H$ in $G$. Let $M$ be a maximal subgroup of $G$ containing $H$. Then $p$ divides $|G:M|$ and hence $p$ divides $|G/Phi(G)|$, contradiction.
answered Apr 23 '14 at 14:50
Derek Holt
52.3k53570
52.3k53570
Thanks, I did not find any reference for the proof
– user145150
Apr 23 '14 at 14:54
add a comment |
Thanks, I did not find any reference for the proof
– user145150
Apr 23 '14 at 14:54
Thanks, I did not find any reference for the proof
– user145150
Apr 23 '14 at 14:54
Thanks, I did not find any reference for the proof
– user145150
Apr 23 '14 at 14:54
add a comment |
up vote
5
down vote
To find a finite group with non-abelian Frattini subgroup, you'll need a group with a non-abelian maximal subgroup, but that does not suffice. The dihedral group of order 16 has a maximal subgroup isomorphic to the dihedral group of order 8, but the Frattini subgroup of a non-cyclic group of order 16 has order at most 4, so is abelian (it is Klein 4 in this case).
The smallest examples have order 64. One particular example is given by a matrix group:$$G=leftlangle begin{bmatrix} 0 & 1 & 0 \ 1 & 2 & 0 \ 0 & 0 & 1 end{bmatrix},
begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 end{bmatrix} mod 4rightrangle leq operatorname{GL}(2,mathbb{Z}/4mathbb{Z})$$ which is a semi-direct product of $C_4$ acting on $C_4 times C_4$. Its Frattini subgroup is isomorphic to $C_2 times D_8$. The only other possibility for a non-abelian Frattini subgroup of a group of order 64 is $C_2 times Q_8$.
One reason books emphasize Frattini subgroups of $p$-groups is that they have a very nice definition there: $Phi(G) = G^p [G,G]$. Hence calculations and theorems are much easier. For solvable groups, there is still some research into embedding properties related to the Frattini subgroup, and for non-solvable groups, there are significant questions left open.
I gave an answer you might be interested in, describing the groups that can occur as Frattini subgroups. In particular, some non-abelian groups are on the list. :-)
so if I could construct the frattini subgroup for a finite group, would that be something?
– user145150
Apr 23 '14 at 15:51
add a comment |
up vote
5
down vote
To find a finite group with non-abelian Frattini subgroup, you'll need a group with a non-abelian maximal subgroup, but that does not suffice. The dihedral group of order 16 has a maximal subgroup isomorphic to the dihedral group of order 8, but the Frattini subgroup of a non-cyclic group of order 16 has order at most 4, so is abelian (it is Klein 4 in this case).
The smallest examples have order 64. One particular example is given by a matrix group:$$G=leftlangle begin{bmatrix} 0 & 1 & 0 \ 1 & 2 & 0 \ 0 & 0 & 1 end{bmatrix},
begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 end{bmatrix} mod 4rightrangle leq operatorname{GL}(2,mathbb{Z}/4mathbb{Z})$$ which is a semi-direct product of $C_4$ acting on $C_4 times C_4$. Its Frattini subgroup is isomorphic to $C_2 times D_8$. The only other possibility for a non-abelian Frattini subgroup of a group of order 64 is $C_2 times Q_8$.
One reason books emphasize Frattini subgroups of $p$-groups is that they have a very nice definition there: $Phi(G) = G^p [G,G]$. Hence calculations and theorems are much easier. For solvable groups, there is still some research into embedding properties related to the Frattini subgroup, and for non-solvable groups, there are significant questions left open.
I gave an answer you might be interested in, describing the groups that can occur as Frattini subgroups. In particular, some non-abelian groups are on the list. :-)
so if I could construct the frattini subgroup for a finite group, would that be something?
– user145150
Apr 23 '14 at 15:51
add a comment |
up vote
5
down vote
up vote
5
down vote
To find a finite group with non-abelian Frattini subgroup, you'll need a group with a non-abelian maximal subgroup, but that does not suffice. The dihedral group of order 16 has a maximal subgroup isomorphic to the dihedral group of order 8, but the Frattini subgroup of a non-cyclic group of order 16 has order at most 4, so is abelian (it is Klein 4 in this case).
The smallest examples have order 64. One particular example is given by a matrix group:$$G=leftlangle begin{bmatrix} 0 & 1 & 0 \ 1 & 2 & 0 \ 0 & 0 & 1 end{bmatrix},
begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 end{bmatrix} mod 4rightrangle leq operatorname{GL}(2,mathbb{Z}/4mathbb{Z})$$ which is a semi-direct product of $C_4$ acting on $C_4 times C_4$. Its Frattini subgroup is isomorphic to $C_2 times D_8$. The only other possibility for a non-abelian Frattini subgroup of a group of order 64 is $C_2 times Q_8$.
One reason books emphasize Frattini subgroups of $p$-groups is that they have a very nice definition there: $Phi(G) = G^p [G,G]$. Hence calculations and theorems are much easier. For solvable groups, there is still some research into embedding properties related to the Frattini subgroup, and for non-solvable groups, there are significant questions left open.
I gave an answer you might be interested in, describing the groups that can occur as Frattini subgroups. In particular, some non-abelian groups are on the list. :-)
To find a finite group with non-abelian Frattini subgroup, you'll need a group with a non-abelian maximal subgroup, but that does not suffice. The dihedral group of order 16 has a maximal subgroup isomorphic to the dihedral group of order 8, but the Frattini subgroup of a non-cyclic group of order 16 has order at most 4, so is abelian (it is Klein 4 in this case).
The smallest examples have order 64. One particular example is given by a matrix group:$$G=leftlangle begin{bmatrix} 0 & 1 & 0 \ 1 & 2 & 0 \ 0 & 0 & 1 end{bmatrix},
begin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 end{bmatrix} mod 4rightrangle leq operatorname{GL}(2,mathbb{Z}/4mathbb{Z})$$ which is a semi-direct product of $C_4$ acting on $C_4 times C_4$. Its Frattini subgroup is isomorphic to $C_2 times D_8$. The only other possibility for a non-abelian Frattini subgroup of a group of order 64 is $C_2 times Q_8$.
One reason books emphasize Frattini subgroups of $p$-groups is that they have a very nice definition there: $Phi(G) = G^p [G,G]$. Hence calculations and theorems are much easier. For solvable groups, there is still some research into embedding properties related to the Frattini subgroup, and for non-solvable groups, there are significant questions left open.
I gave an answer you might be interested in, describing the groups that can occur as Frattini subgroups. In particular, some non-abelian groups are on the list. :-)
edited Dec 4 at 0:46
the_fox
2,3191430
2,3191430
answered Apr 23 '14 at 15:38
Jack Schmidt
42.9k570148
42.9k570148
so if I could construct the frattini subgroup for a finite group, would that be something?
– user145150
Apr 23 '14 at 15:51
add a comment |
so if I could construct the frattini subgroup for a finite group, would that be something?
– user145150
Apr 23 '14 at 15:51
so if I could construct the frattini subgroup for a finite group, would that be something?
– user145150
Apr 23 '14 at 15:51
so if I could construct the frattini subgroup for a finite group, would that be something?
– user145150
Apr 23 '14 at 15:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f765995%2ffrattini-subgroup-of-a-finite-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
No to the first question. Counterexample? Choose a finite non-abelian $;p$-group with non-abelian maximal proper subgroup. For the second question: for any such prime divisor there is a maximal subgroup divisible by that prime...
– DonAntonio
Apr 23 '14 at 14:26
and it is enough to find only one maximal subgroup with order divisible by the prime?
– user145150
Apr 23 '14 at 14:29
for get that: I misread that last part since, obviously, if the Frattini subgroup is trivial then it cannot be divided any any prime...yet you're talking of the Frattini factor...do you mean the quotient $;G/Phi(G);$ ?
– DonAntonio
Apr 23 '14 at 14:37
do you recommend any reference?
– user145150
Apr 23 '14 at 14:44