What is the nature of the critical points of $f(x,y) = 4x^2 -12xy + 9y^2$.











up vote
1
down vote

favorite












Discuss the nature (saddle point, extremal point) of the critical points $p_o$ of the function described by:



$f(x,y) = 4x^2 -12xy + 9y^2$.



Then,



(1) $f_1 (x,y) = 8x - 12y$



and



(2) $f_2 (x,y) -12x + 18y$.



To get the critical points of the function $f(x,y)$, I set (1) and (2) equal to $0$ and solve the simultaneous equations. So,



$8x - 12y = 0$



$-12x + 18y = 0$.



Since These two equations are scalar multiples of each other, I get that $t(frac{3}{2},1)$ is the set of critical points for the function.



Now, $f_{12} = -12$, $f_{11} = 8$, and $f_{22} = 18$. From my textbook, $Delta = (f_{12} (p_o))^2 - f_{11} (p_o)f_{22} (p_o)$, which means that $Delta = 144 -(18)(8) = 0$. My textbook says that if $Delta = 0$, then the nature of $p_o$ can't be determined by the $Delta$ formula. Are there other ways to figure out the nature of the critical points of $f$?










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    Discuss the nature (saddle point, extremal point) of the critical points $p_o$ of the function described by:



    $f(x,y) = 4x^2 -12xy + 9y^2$.



    Then,



    (1) $f_1 (x,y) = 8x - 12y$



    and



    (2) $f_2 (x,y) -12x + 18y$.



    To get the critical points of the function $f(x,y)$, I set (1) and (2) equal to $0$ and solve the simultaneous equations. So,



    $8x - 12y = 0$



    $-12x + 18y = 0$.



    Since These two equations are scalar multiples of each other, I get that $t(frac{3}{2},1)$ is the set of critical points for the function.



    Now, $f_{12} = -12$, $f_{11} = 8$, and $f_{22} = 18$. From my textbook, $Delta = (f_{12} (p_o))^2 - f_{11} (p_o)f_{22} (p_o)$, which means that $Delta = 144 -(18)(8) = 0$. My textbook says that if $Delta = 0$, then the nature of $p_o$ can't be determined by the $Delta$ formula. Are there other ways to figure out the nature of the critical points of $f$?










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Discuss the nature (saddle point, extremal point) of the critical points $p_o$ of the function described by:



      $f(x,y) = 4x^2 -12xy + 9y^2$.



      Then,



      (1) $f_1 (x,y) = 8x - 12y$



      and



      (2) $f_2 (x,y) -12x + 18y$.



      To get the critical points of the function $f(x,y)$, I set (1) and (2) equal to $0$ and solve the simultaneous equations. So,



      $8x - 12y = 0$



      $-12x + 18y = 0$.



      Since These two equations are scalar multiples of each other, I get that $t(frac{3}{2},1)$ is the set of critical points for the function.



      Now, $f_{12} = -12$, $f_{11} = 8$, and $f_{22} = 18$. From my textbook, $Delta = (f_{12} (p_o))^2 - f_{11} (p_o)f_{22} (p_o)$, which means that $Delta = 144 -(18)(8) = 0$. My textbook says that if $Delta = 0$, then the nature of $p_o$ can't be determined by the $Delta$ formula. Are there other ways to figure out the nature of the critical points of $f$?










      share|cite|improve this question













      Discuss the nature (saddle point, extremal point) of the critical points $p_o$ of the function described by:



      $f(x,y) = 4x^2 -12xy + 9y^2$.



      Then,



      (1) $f_1 (x,y) = 8x - 12y$



      and



      (2) $f_2 (x,y) -12x + 18y$.



      To get the critical points of the function $f(x,y)$, I set (1) and (2) equal to $0$ and solve the simultaneous equations. So,



      $8x - 12y = 0$



      $-12x + 18y = 0$.



      Since These two equations are scalar multiples of each other, I get that $t(frac{3}{2},1)$ is the set of critical points for the function.



      Now, $f_{12} = -12$, $f_{11} = 8$, and $f_{22} = 18$. From my textbook, $Delta = (f_{12} (p_o))^2 - f_{11} (p_o)f_{22} (p_o)$, which means that $Delta = 144 -(18)(8) = 0$. My textbook says that if $Delta = 0$, then the nature of $p_o$ can't be determined by the $Delta$ formula. Are there other ways to figure out the nature of the critical points of $f$?







      calculus multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 4 at 1:08









      K.M

      651312




      651312






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote



          accepted










          $$(4x^2-12xy + 9y^2)=(2x-3y)^2ge 0$$



          Hence it attains minimum value when $2x=3y$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024972%2fwhat-is-the-nature-of-the-critical-points-of-fx-y-4x2-12xy-9y2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote



            accepted










            $$(4x^2-12xy + 9y^2)=(2x-3y)^2ge 0$$



            Hence it attains minimum value when $2x=3y$.






            share|cite|improve this answer

























              up vote
              3
              down vote



              accepted










              $$(4x^2-12xy + 9y^2)=(2x-3y)^2ge 0$$



              Hence it attains minimum value when $2x=3y$.






              share|cite|improve this answer























                up vote
                3
                down vote



                accepted







                up vote
                3
                down vote



                accepted






                $$(4x^2-12xy + 9y^2)=(2x-3y)^2ge 0$$



                Hence it attains minimum value when $2x=3y$.






                share|cite|improve this answer












                $$(4x^2-12xy + 9y^2)=(2x-3y)^2ge 0$$



                Hence it attains minimum value when $2x=3y$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 4 at 1:14









                Siong Thye Goh

                97.4k1463116




                97.4k1463116






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024972%2fwhat-is-the-nature-of-the-critical-points-of-fx-y-4x2-12xy-9y2%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna