Determinant of matrix $Ainmathbb{R}^{n,n}$ [closed]
How to prove that for matrix $Ainmathbb{R}^{n,n}$ we have
$$det A = det
begin{vmatrix}
x & x& x& ...&x&x\
1-x& 1&1 & ...&1& 1\
0& 1-x& 1& ...&1&1\
0& 0&1-x& ...&1&1\
&&ldots&& \
0& 0& 0& ...&1-x&1\
end{vmatrix} =x^n
$$
matrices determinant
closed as off-topic by Martin R, Saad, Dando18, A. Pongrácz, dantopa Dec 8 at 17:22
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Martin R, Saad, Dando18, A. Pongrácz
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
How to prove that for matrix $Ainmathbb{R}^{n,n}$ we have
$$det A = det
begin{vmatrix}
x & x& x& ...&x&x\
1-x& 1&1 & ...&1& 1\
0& 1-x& 1& ...&1&1\
0& 0&1-x& ...&1&1\
&&ldots&& \
0& 0& 0& ...&1-x&1\
end{vmatrix} =x^n
$$
matrices determinant
closed as off-topic by Martin R, Saad, Dando18, A. Pongrácz, dantopa Dec 8 at 17:22
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Martin R, Saad, Dando18, A. Pongrácz
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
How to prove that for matrix $Ainmathbb{R}^{n,n}$ we have
$$det A = det
begin{vmatrix}
x & x& x& ...&x&x\
1-x& 1&1 & ...&1& 1\
0& 1-x& 1& ...&1&1\
0& 0&1-x& ...&1&1\
&&ldots&& \
0& 0& 0& ...&1-x&1\
end{vmatrix} =x^n
$$
matrices determinant
How to prove that for matrix $Ainmathbb{R}^{n,n}$ we have
$$det A = det
begin{vmatrix}
x & x& x& ...&x&x\
1-x& 1&1 & ...&1& 1\
0& 1-x& 1& ...&1&1\
0& 0&1-x& ...&1&1\
&&ldots&& \
0& 0& 0& ...&1-x&1\
end{vmatrix} =x^n
$$
matrices determinant
matrices determinant
asked Dec 7 at 7:54
avan1235
1886
1886
closed as off-topic by Martin R, Saad, Dando18, A. Pongrácz, dantopa Dec 8 at 17:22
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Martin R, Saad, Dando18, A. Pongrácz
If this question can be reworded to fit the rules in the help center, please edit the question.
closed as off-topic by Martin R, Saad, Dando18, A. Pongrácz, dantopa Dec 8 at 17:22
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Martin R, Saad, Dando18, A. Pongrácz
If this question can be reworded to fit the rules in the help center, please edit the question.
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Subtract every column other than the last by the last column. Then move the last column to the first (this gives you a factor of $(-1)^{n-1}$ in the determinant). The result is a lower triangular matrix whose main diagonal is $(x,-x,-x,ldots,-x)$. Thus the determinant of the original matrix is $(-1)^{n-1}x(-x)^{n-1}=x^n$.
add a comment |
Let the determinant of $Ainmathbb R^{ntimes n}$ be a polynomial in $x$ denoted as $P_n(x); P_1(x)=det[x]=x$. Expand along the first column,
$det A=P_n(x)=
begin{vmatrix}
x& x & x & ldots & x& x \
1-x & 1 & 1&ldots &1& 1 \
0 & 1-x & 1 & ldots &1& 1 \
0 & 0 & 1-x & ldots &1& 1 \
vdots&vdots&vdots&&vdots&vdots\
0 & 0 & 0 & ldots&1-x&1 notag
end{vmatrix}_{n}\=xbegin{vmatrix}
1& 1 &ldots&1 \
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0& ldots&1-xnotag
end{vmatrix}_{n-1}+(x-1)begin{vmatrix}
x& x&ldots & x\
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0 & ldots&1-xnotag
end{vmatrix}_{n-1}$
Note that the first determinant is just $frac {P_{n-1}(x)}x$ and the second one $P_{n-1}(x)$.
$implies P_n(x)=xcdotfrac{P_{n-1}(x)}x+(x-1)P_{n-1}(x)\ =xP_{n-1}(x)\ =x^2P_{n-2}(x)\ =x^3P_{n-3}(x)\ =x^{n-1}P_{n-(n-1)}(x)\ =x^n$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Subtract every column other than the last by the last column. Then move the last column to the first (this gives you a factor of $(-1)^{n-1}$ in the determinant). The result is a lower triangular matrix whose main diagonal is $(x,-x,-x,ldots,-x)$. Thus the determinant of the original matrix is $(-1)^{n-1}x(-x)^{n-1}=x^n$.
add a comment |
Subtract every column other than the last by the last column. Then move the last column to the first (this gives you a factor of $(-1)^{n-1}$ in the determinant). The result is a lower triangular matrix whose main diagonal is $(x,-x,-x,ldots,-x)$. Thus the determinant of the original matrix is $(-1)^{n-1}x(-x)^{n-1}=x^n$.
add a comment |
Subtract every column other than the last by the last column. Then move the last column to the first (this gives you a factor of $(-1)^{n-1}$ in the determinant). The result is a lower triangular matrix whose main diagonal is $(x,-x,-x,ldots,-x)$. Thus the determinant of the original matrix is $(-1)^{n-1}x(-x)^{n-1}=x^n$.
Subtract every column other than the last by the last column. Then move the last column to the first (this gives you a factor of $(-1)^{n-1}$ in the determinant). The result is a lower triangular matrix whose main diagonal is $(x,-x,-x,ldots,-x)$. Thus the determinant of the original matrix is $(-1)^{n-1}x(-x)^{n-1}=x^n$.
answered Dec 7 at 9:36
user1551
71.2k566125
71.2k566125
add a comment |
add a comment |
Let the determinant of $Ainmathbb R^{ntimes n}$ be a polynomial in $x$ denoted as $P_n(x); P_1(x)=det[x]=x$. Expand along the first column,
$det A=P_n(x)=
begin{vmatrix}
x& x & x & ldots & x& x \
1-x & 1 & 1&ldots &1& 1 \
0 & 1-x & 1 & ldots &1& 1 \
0 & 0 & 1-x & ldots &1& 1 \
vdots&vdots&vdots&&vdots&vdots\
0 & 0 & 0 & ldots&1-x&1 notag
end{vmatrix}_{n}\=xbegin{vmatrix}
1& 1 &ldots&1 \
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0& ldots&1-xnotag
end{vmatrix}_{n-1}+(x-1)begin{vmatrix}
x& x&ldots & x\
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0 & ldots&1-xnotag
end{vmatrix}_{n-1}$
Note that the first determinant is just $frac {P_{n-1}(x)}x$ and the second one $P_{n-1}(x)$.
$implies P_n(x)=xcdotfrac{P_{n-1}(x)}x+(x-1)P_{n-1}(x)\ =xP_{n-1}(x)\ =x^2P_{n-2}(x)\ =x^3P_{n-3}(x)\ =x^{n-1}P_{n-(n-1)}(x)\ =x^n$
add a comment |
Let the determinant of $Ainmathbb R^{ntimes n}$ be a polynomial in $x$ denoted as $P_n(x); P_1(x)=det[x]=x$. Expand along the first column,
$det A=P_n(x)=
begin{vmatrix}
x& x & x & ldots & x& x \
1-x & 1 & 1&ldots &1& 1 \
0 & 1-x & 1 & ldots &1& 1 \
0 & 0 & 1-x & ldots &1& 1 \
vdots&vdots&vdots&&vdots&vdots\
0 & 0 & 0 & ldots&1-x&1 notag
end{vmatrix}_{n}\=xbegin{vmatrix}
1& 1 &ldots&1 \
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0& ldots&1-xnotag
end{vmatrix}_{n-1}+(x-1)begin{vmatrix}
x& x&ldots & x\
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0 & ldots&1-xnotag
end{vmatrix}_{n-1}$
Note that the first determinant is just $frac {P_{n-1}(x)}x$ and the second one $P_{n-1}(x)$.
$implies P_n(x)=xcdotfrac{P_{n-1}(x)}x+(x-1)P_{n-1}(x)\ =xP_{n-1}(x)\ =x^2P_{n-2}(x)\ =x^3P_{n-3}(x)\ =x^{n-1}P_{n-(n-1)}(x)\ =x^n$
add a comment |
Let the determinant of $Ainmathbb R^{ntimes n}$ be a polynomial in $x$ denoted as $P_n(x); P_1(x)=det[x]=x$. Expand along the first column,
$det A=P_n(x)=
begin{vmatrix}
x& x & x & ldots & x& x \
1-x & 1 & 1&ldots &1& 1 \
0 & 1-x & 1 & ldots &1& 1 \
0 & 0 & 1-x & ldots &1& 1 \
vdots&vdots&vdots&&vdots&vdots\
0 & 0 & 0 & ldots&1-x&1 notag
end{vmatrix}_{n}\=xbegin{vmatrix}
1& 1 &ldots&1 \
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0& ldots&1-xnotag
end{vmatrix}_{n-1}+(x-1)begin{vmatrix}
x& x&ldots & x\
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0 & ldots&1-xnotag
end{vmatrix}_{n-1}$
Note that the first determinant is just $frac {P_{n-1}(x)}x$ and the second one $P_{n-1}(x)$.
$implies P_n(x)=xcdotfrac{P_{n-1}(x)}x+(x-1)P_{n-1}(x)\ =xP_{n-1}(x)\ =x^2P_{n-2}(x)\ =x^3P_{n-3}(x)\ =x^{n-1}P_{n-(n-1)}(x)\ =x^n$
Let the determinant of $Ainmathbb R^{ntimes n}$ be a polynomial in $x$ denoted as $P_n(x); P_1(x)=det[x]=x$. Expand along the first column,
$det A=P_n(x)=
begin{vmatrix}
x& x & x & ldots & x& x \
1-x & 1 & 1&ldots &1& 1 \
0 & 1-x & 1 & ldots &1& 1 \
0 & 0 & 1-x & ldots &1& 1 \
vdots&vdots&vdots&&vdots&vdots\
0 & 0 & 0 & ldots&1-x&1 notag
end{vmatrix}_{n}\=xbegin{vmatrix}
1& 1 &ldots&1 \
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0& ldots&1-xnotag
end{vmatrix}_{n-1}+(x-1)begin{vmatrix}
x& x&ldots & x\
1-x & 1&ldots &1\
0 & 1-x& ldots &1\
0 & 0& ldots &1\
vdots&vdots&&vdots\
0 & 0 & ldots&1-xnotag
end{vmatrix}_{n-1}$
Note that the first determinant is just $frac {P_{n-1}(x)}x$ and the second one $P_{n-1}(x)$.
$implies P_n(x)=xcdotfrac{P_{n-1}(x)}x+(x-1)P_{n-1}(x)\ =xP_{n-1}(x)\ =x^2P_{n-2}(x)\ =x^3P_{n-3}(x)\ =x^{n-1}P_{n-(n-1)}(x)\ =x^n$
edited Dec 7 at 7:59
answered Dec 7 at 7:56
Shubham Johri
3,603716
3,603716
add a comment |
add a comment |