Calculating the distance function on a manifold, given the Riemannian metric in matrix form
$begingroup$
I come from a CS background (and this is for a CS project) and as such my skills and knowledge of geometry are pretty poor. I'm looking at a bunch of points on a Riemannian manifold (let's say, for convenience, the hyperboloid) with a metric G (which, for the hyperboloid, I believe takes the form of a diagonal matrix whose first entry is -1 and the rest are 1s).
I want to calculate a sequence of Riemannian metrics [in matrix form - from what I'm aware, Riemannian metrics are usually rank 2 tensors, so the matrix form is just the (1,1) representation of such a tensor?], where each new element in the sequence is a function of the last. In other words, if we have $G = G_0$, $G_n = F(G_{n-1})$ for some arbitrary $F$.
Is there any way I can calculate the distance function on the Riemannian manifold corresponding to the new Riemannian metric? For instance, I know (unless I am mistaken) that the distance function on the hyperboloid is $d(x, y) = arccosh(- x^T G y)$ where $G$ is given as above, and that generally computing the distance function on a Riemannian manifold involves an arc length integral, so I'm wondering if there's any closed form I can find for that integral [not necessarily a solution], either based generally on a metric $G_{n}$ or on, say, $arccosh(- x^T G_0 y)$, $F$, and $G_n$.
Thanks!
differential-geometry numerical-linear-algebra hyperbolic-geometry
$endgroup$
add a comment |
$begingroup$
I come from a CS background (and this is for a CS project) and as such my skills and knowledge of geometry are pretty poor. I'm looking at a bunch of points on a Riemannian manifold (let's say, for convenience, the hyperboloid) with a metric G (which, for the hyperboloid, I believe takes the form of a diagonal matrix whose first entry is -1 and the rest are 1s).
I want to calculate a sequence of Riemannian metrics [in matrix form - from what I'm aware, Riemannian metrics are usually rank 2 tensors, so the matrix form is just the (1,1) representation of such a tensor?], where each new element in the sequence is a function of the last. In other words, if we have $G = G_0$, $G_n = F(G_{n-1})$ for some arbitrary $F$.
Is there any way I can calculate the distance function on the Riemannian manifold corresponding to the new Riemannian metric? For instance, I know (unless I am mistaken) that the distance function on the hyperboloid is $d(x, y) = arccosh(- x^T G y)$ where $G$ is given as above, and that generally computing the distance function on a Riemannian manifold involves an arc length integral, so I'm wondering if there's any closed form I can find for that integral [not necessarily a solution], either based generally on a metric $G_{n}$ or on, say, $arccosh(- x^T G_0 y)$, $F$, and $G_n$.
Thanks!
differential-geometry numerical-linear-algebra hyperbolic-geometry
$endgroup$
add a comment |
$begingroup$
I come from a CS background (and this is for a CS project) and as such my skills and knowledge of geometry are pretty poor. I'm looking at a bunch of points on a Riemannian manifold (let's say, for convenience, the hyperboloid) with a metric G (which, for the hyperboloid, I believe takes the form of a diagonal matrix whose first entry is -1 and the rest are 1s).
I want to calculate a sequence of Riemannian metrics [in matrix form - from what I'm aware, Riemannian metrics are usually rank 2 tensors, so the matrix form is just the (1,1) representation of such a tensor?], where each new element in the sequence is a function of the last. In other words, if we have $G = G_0$, $G_n = F(G_{n-1})$ for some arbitrary $F$.
Is there any way I can calculate the distance function on the Riemannian manifold corresponding to the new Riemannian metric? For instance, I know (unless I am mistaken) that the distance function on the hyperboloid is $d(x, y) = arccosh(- x^T G y)$ where $G$ is given as above, and that generally computing the distance function on a Riemannian manifold involves an arc length integral, so I'm wondering if there's any closed form I can find for that integral [not necessarily a solution], either based generally on a metric $G_{n}$ or on, say, $arccosh(- x^T G_0 y)$, $F$, and $G_n$.
Thanks!
differential-geometry numerical-linear-algebra hyperbolic-geometry
$endgroup$
I come from a CS background (and this is for a CS project) and as such my skills and knowledge of geometry are pretty poor. I'm looking at a bunch of points on a Riemannian manifold (let's say, for convenience, the hyperboloid) with a metric G (which, for the hyperboloid, I believe takes the form of a diagonal matrix whose first entry is -1 and the rest are 1s).
I want to calculate a sequence of Riemannian metrics [in matrix form - from what I'm aware, Riemannian metrics are usually rank 2 tensors, so the matrix form is just the (1,1) representation of such a tensor?], where each new element in the sequence is a function of the last. In other words, if we have $G = G_0$, $G_n = F(G_{n-1})$ for some arbitrary $F$.
Is there any way I can calculate the distance function on the Riemannian manifold corresponding to the new Riemannian metric? For instance, I know (unless I am mistaken) that the distance function on the hyperboloid is $d(x, y) = arccosh(- x^T G y)$ where $G$ is given as above, and that generally computing the distance function on a Riemannian manifold involves an arc length integral, so I'm wondering if there's any closed form I can find for that integral [not necessarily a solution], either based generally on a metric $G_{n}$ or on, say, $arccosh(- x^T G_0 y)$, $F$, and $G_n$.
Thanks!
differential-geometry numerical-linear-algebra hyperbolic-geometry
differential-geometry numerical-linear-algebra hyperbolic-geometry
edited Jan 4 at 7:21
king_geedorah
asked Jan 4 at 4:00
king_geedorahking_geedorah
63
63
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061307%2fcalculating-the-distance-function-on-a-manifold-given-the-riemannian-metric-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061307%2fcalculating-the-distance-function-on-a-manifold-given-the-riemannian-metric-in%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown