How to prove $sum_{n=0}^{infty} frac{n^2}{2^n} = 6$?












35












$begingroup$


I'd like to find out why



begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = 6
end{align}



I tried to rewrite it into a geometric series



begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
end{align}



But I don't know what to do with the $n^2$.










share|cite|improve this question











$endgroup$

















    35












    $begingroup$


    I'd like to find out why



    begin{align}
    sum_{n=0}^{infty} frac{n^2}{2^n} = 6
    end{align}



    I tried to rewrite it into a geometric series



    begin{align}
    sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
    end{align}



    But I don't know what to do with the $n^2$.










    share|cite|improve this question











    $endgroup$















      35












      35








      35


      6



      $begingroup$


      I'd like to find out why



      begin{align}
      sum_{n=0}^{infty} frac{n^2}{2^n} = 6
      end{align}



      I tried to rewrite it into a geometric series



      begin{align}
      sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
      end{align}



      But I don't know what to do with the $n^2$.










      share|cite|improve this question











      $endgroup$




      I'd like to find out why



      begin{align}
      sum_{n=0}^{infty} frac{n^2}{2^n} = 6
      end{align}



      I tried to rewrite it into a geometric series



      begin{align}
      sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
      end{align}



      But I don't know what to do with the $n^2$.







      calculus real-analysis sequences-and-series analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 7 '14 at 6:09









      Nick Peterson

      26.3k23960




      26.3k23960










      asked Dec 5 '13 at 13:16









      TheWaveLadTheWaveLad

      897720




      897720






















          6 Answers
          6






          active

          oldest

          votes


















          34












          $begingroup$

          First observe that the sum converges (by, say, the root test).



          We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.



          Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.



          Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.



          One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.






          share|cite|improve this answer











          $endgroup$





















            22












            $begingroup$

            If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$



            Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$



            $$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$



            Differentiating wrt $r$ (fixed sign error!)



            $$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$



            $$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$



            Here $displaystyle r=frac12$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              You had a sign error after you differentiated, but it is fixed!
              $endgroup$
              – user452
              Dec 6 '13 at 2:17










            • $begingroup$
              @trb456, thanks for your rectification
              $endgroup$
              – lab bhattacharjee
              Dec 6 '13 at 3:48



















            15












            $begingroup$

            Consider
            $$
            frac{1}{1-z} = sum_{n=0}^{infty} z^n
            $$
            Differentiating and multiplying by $z$, one has
            $$
            frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
            $$
            Repeating the above process,
            $$
            sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
            $$
            Now plug in $z=1/2$






            share|cite|improve this answer









            $endgroup$





















              10












              $begingroup$

              There is an elementary and visually appealing solution, which is to think "matrix-like".



              Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:



              $$
              begin{align}
              && 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
              \ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
              \ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
              \ + && && && && && && + && 2^{-3} && + && cdots && +
              \ + && && && && && && && && + && ddots
              end{align}
              $$



              summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.



              What we just did is equivalent to:



              $$
              sum_{n=0}^{infty} frac{n}{2^n} =
              sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
              sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
              sum_{m=1}^{infty} 2^{1-m} =
              2
              $$



              It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)





              $$
              sum_{n=0}^{infty} frac{n^2}{2^n} =
              sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
              sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
              sum_{m=1}^{infty} left{
              sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
              right}
              $$



              We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:



              $$
              sum_{n=0}^{m-1} frac{n}{2^n} =
              sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
              sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
              sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
              2 - left(m+1right)2^{1-m}
              $$



              Substituting:



              $$
              sum_{n=0}^{infty} frac{n^2}{2^n} =
              sum_{m=1}^{infty} left{
              2 - left[ 2 - left(m+1right)2^{1-m} right]
              right} =
              sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
              sum_{m=1}^{infty} left{
              left(m-1right)2^{1-m} + 2cdot 2^{1-m}
              right} =
              sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
              2 + 4 = 6
              $$



              Again, you can change the order of summations because all inner sums converge absolutely.






              share|cite|improve this answer









              $endgroup$





















                9












                $begingroup$

                Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.



                Let's think of this in terms of power series. You noticed that you can write
                $$
                sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
                $$
                so, let's consider the power series
                $$
                f(x)=sum_{n=0}^{infty}n^2x^n.
                $$
                If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.



                Now, we note that
                $$
                f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
                $$
                But, notice that $int n^2x^{n-1},dx=nx^n$; so,
                $$tag{1}
                sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
                $$
                Now, we write
                $$tag{2}
                sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
                $$
                But, this last is a geometric series; so, as long as $lvert xrvert<1$,
                $$
                sum_{n=0}^{infty}x^n=frac{1}{1-x}.
                $$
                Plugging this back in to (2), we find that for $lvert xrvert<1$,
                $$
                sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
                $$
                But, plugging this back in to (1), we find that
                $$
                sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
                $$
                So, finally,
                $$
                f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
                $$
                Plugging in $x=frac{1}{2}$, we find
                $$
                sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
                $$






                share|cite|improve this answer









                $endgroup$





















                  4












                  $begingroup$

                  First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
                  Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
                  $$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
                  Finally the desired sum is $S=2S_2-S_1=6$.






                  share|cite|improve this answer









                  $endgroup$













                    Your Answer





                    StackExchange.ifUsing("editor", function () {
                    return StackExchange.using("mathjaxEditing", function () {
                    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                    });
                    });
                    }, "mathjax-editing");

                    StackExchange.ready(function() {
                    var channelOptions = {
                    tags: "".split(" "),
                    id: "69"
                    };
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function() {
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled) {
                    StackExchange.using("snippets", function() {
                    createEditor();
                    });
                    }
                    else {
                    createEditor();
                    }
                    });

                    function createEditor() {
                    StackExchange.prepareEditor({
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader: {
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    },
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    });


                    }
                    });














                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f593996%2fhow-to-prove-sum-n-0-infty-fracn22n-6%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown

























                    6 Answers
                    6






                    active

                    oldest

                    votes








                    6 Answers
                    6






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    34












                    $begingroup$

                    First observe that the sum converges (by, say, the root test).



                    We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.



                    Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.



                    Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.



                    One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.






                    share|cite|improve this answer











                    $endgroup$


















                      34












                      $begingroup$

                      First observe that the sum converges (by, say, the root test).



                      We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.



                      Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.



                      Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.



                      One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.






                      share|cite|improve this answer











                      $endgroup$
















                        34












                        34








                        34





                        $begingroup$

                        First observe that the sum converges (by, say, the root test).



                        We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.



                        Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.



                        Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.



                        One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.






                        share|cite|improve this answer











                        $endgroup$



                        First observe that the sum converges (by, say, the root test).



                        We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.



                        Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.



                        Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.



                        One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Jan 3 '14 at 0:18

























                        answered Dec 5 '13 at 13:22









                        universalsetuniversalset

                        7,3411330




                        7,3411330























                            22












                            $begingroup$

                            If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$



                            Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$



                            Differentiating wrt $r$ (fixed sign error!)



                            $$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$



                            Here $displaystyle r=frac12$






                            share|cite|improve this answer











                            $endgroup$













                            • $begingroup$
                              You had a sign error after you differentiated, but it is fixed!
                              $endgroup$
                              – user452
                              Dec 6 '13 at 2:17










                            • $begingroup$
                              @trb456, thanks for your rectification
                              $endgroup$
                              – lab bhattacharjee
                              Dec 6 '13 at 3:48
















                            22












                            $begingroup$

                            If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$



                            Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$



                            Differentiating wrt $r$ (fixed sign error!)



                            $$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$



                            Here $displaystyle r=frac12$






                            share|cite|improve this answer











                            $endgroup$













                            • $begingroup$
                              You had a sign error after you differentiated, but it is fixed!
                              $endgroup$
                              – user452
                              Dec 6 '13 at 2:17










                            • $begingroup$
                              @trb456, thanks for your rectification
                              $endgroup$
                              – lab bhattacharjee
                              Dec 6 '13 at 3:48














                            22












                            22








                            22





                            $begingroup$

                            If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$



                            Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$



                            Differentiating wrt $r$ (fixed sign error!)



                            $$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$



                            Here $displaystyle r=frac12$






                            share|cite|improve this answer











                            $endgroup$



                            If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$



                            Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$



                            Differentiating wrt $r$ (fixed sign error!)



                            $$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$



                            $$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$



                            Here $displaystyle r=frac12$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Dec 6 '13 at 2:33







                            user452

















                            answered Dec 5 '13 at 13:28









                            lab bhattacharjeelab bhattacharjee

                            224k15156274




                            224k15156274












                            • $begingroup$
                              You had a sign error after you differentiated, but it is fixed!
                              $endgroup$
                              – user452
                              Dec 6 '13 at 2:17










                            • $begingroup$
                              @trb456, thanks for your rectification
                              $endgroup$
                              – lab bhattacharjee
                              Dec 6 '13 at 3:48


















                            • $begingroup$
                              You had a sign error after you differentiated, but it is fixed!
                              $endgroup$
                              – user452
                              Dec 6 '13 at 2:17










                            • $begingroup$
                              @trb456, thanks for your rectification
                              $endgroup$
                              – lab bhattacharjee
                              Dec 6 '13 at 3:48
















                            $begingroup$
                            You had a sign error after you differentiated, but it is fixed!
                            $endgroup$
                            – user452
                            Dec 6 '13 at 2:17




                            $begingroup$
                            You had a sign error after you differentiated, but it is fixed!
                            $endgroup$
                            – user452
                            Dec 6 '13 at 2:17












                            $begingroup$
                            @trb456, thanks for your rectification
                            $endgroup$
                            – lab bhattacharjee
                            Dec 6 '13 at 3:48




                            $begingroup$
                            @trb456, thanks for your rectification
                            $endgroup$
                            – lab bhattacharjee
                            Dec 6 '13 at 3:48











                            15












                            $begingroup$

                            Consider
                            $$
                            frac{1}{1-z} = sum_{n=0}^{infty} z^n
                            $$
                            Differentiating and multiplying by $z$, one has
                            $$
                            frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
                            $$
                            Repeating the above process,
                            $$
                            sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
                            $$
                            Now plug in $z=1/2$






                            share|cite|improve this answer









                            $endgroup$


















                              15












                              $begingroup$

                              Consider
                              $$
                              frac{1}{1-z} = sum_{n=0}^{infty} z^n
                              $$
                              Differentiating and multiplying by $z$, one has
                              $$
                              frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
                              $$
                              Repeating the above process,
                              $$
                              sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
                              $$
                              Now plug in $z=1/2$






                              share|cite|improve this answer









                              $endgroup$
















                                15












                                15








                                15





                                $begingroup$

                                Consider
                                $$
                                frac{1}{1-z} = sum_{n=0}^{infty} z^n
                                $$
                                Differentiating and multiplying by $z$, one has
                                $$
                                frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
                                $$
                                Repeating the above process,
                                $$
                                sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
                                $$
                                Now plug in $z=1/2$






                                share|cite|improve this answer









                                $endgroup$



                                Consider
                                $$
                                frac{1}{1-z} = sum_{n=0}^{infty} z^n
                                $$
                                Differentiating and multiplying by $z$, one has
                                $$
                                frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
                                $$
                                Repeating the above process,
                                $$
                                sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
                                $$
                                Now plug in $z=1/2$







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Dec 5 '13 at 13:28









                                Prahlad VaidyanathanPrahlad Vaidyanathan

                                26.1k12152




                                26.1k12152























                                    10












                                    $begingroup$

                                    There is an elementary and visually appealing solution, which is to think "matrix-like".



                                    Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:



                                    $$
                                    begin{align}
                                    && 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
                                    \ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                    \ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                    \ + && && && && && && + && 2^{-3} && + && cdots && +
                                    \ + && && && && && && && && + && ddots
                                    end{align}
                                    $$



                                    summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.



                                    What we just did is equivalent to:



                                    $$
                                    sum_{n=0}^{infty} frac{n}{2^n} =
                                    sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
                                    sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
                                    sum_{m=1}^{infty} 2^{1-m} =
                                    2
                                    $$



                                    It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)





                                    $$
                                    sum_{n=0}^{infty} frac{n^2}{2^n} =
                                    sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
                                    sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
                                    sum_{m=1}^{infty} left{
                                    sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
                                    right}
                                    $$



                                    We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:



                                    $$
                                    sum_{n=0}^{m-1} frac{n}{2^n} =
                                    sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
                                    sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
                                    sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
                                    2 - left(m+1right)2^{1-m}
                                    $$



                                    Substituting:



                                    $$
                                    sum_{n=0}^{infty} frac{n^2}{2^n} =
                                    sum_{m=1}^{infty} left{
                                    2 - left[ 2 - left(m+1right)2^{1-m} right]
                                    right} =
                                    sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
                                    sum_{m=1}^{infty} left{
                                    left(m-1right)2^{1-m} + 2cdot 2^{1-m}
                                    right} =
                                    sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
                                    2 + 4 = 6
                                    $$



                                    Again, you can change the order of summations because all inner sums converge absolutely.






                                    share|cite|improve this answer









                                    $endgroup$


















                                      10












                                      $begingroup$

                                      There is an elementary and visually appealing solution, which is to think "matrix-like".



                                      Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:



                                      $$
                                      begin{align}
                                      && 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
                                      \ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                      \ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                      \ + && && && && && && + && 2^{-3} && + && cdots && +
                                      \ + && && && && && && && && + && ddots
                                      end{align}
                                      $$



                                      summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.



                                      What we just did is equivalent to:



                                      $$
                                      sum_{n=0}^{infty} frac{n}{2^n} =
                                      sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
                                      sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
                                      sum_{m=1}^{infty} 2^{1-m} =
                                      2
                                      $$



                                      It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)





                                      $$
                                      sum_{n=0}^{infty} frac{n^2}{2^n} =
                                      sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
                                      sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
                                      sum_{m=1}^{infty} left{
                                      sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
                                      right}
                                      $$



                                      We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:



                                      $$
                                      sum_{n=0}^{m-1} frac{n}{2^n} =
                                      sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
                                      sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
                                      sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
                                      2 - left(m+1right)2^{1-m}
                                      $$



                                      Substituting:



                                      $$
                                      sum_{n=0}^{infty} frac{n^2}{2^n} =
                                      sum_{m=1}^{infty} left{
                                      2 - left[ 2 - left(m+1right)2^{1-m} right]
                                      right} =
                                      sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
                                      sum_{m=1}^{infty} left{
                                      left(m-1right)2^{1-m} + 2cdot 2^{1-m}
                                      right} =
                                      sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
                                      2 + 4 = 6
                                      $$



                                      Again, you can change the order of summations because all inner sums converge absolutely.






                                      share|cite|improve this answer









                                      $endgroup$
















                                        10












                                        10








                                        10





                                        $begingroup$

                                        There is an elementary and visually appealing solution, which is to think "matrix-like".



                                        Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:



                                        $$
                                        begin{align}
                                        && 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
                                        \ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                        \ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                        \ + && && && && && && + && 2^{-3} && + && cdots && +
                                        \ + && && && && && && && && + && ddots
                                        end{align}
                                        $$



                                        summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.



                                        What we just did is equivalent to:



                                        $$
                                        sum_{n=0}^{infty} frac{n}{2^n} =
                                        sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
                                        sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
                                        sum_{m=1}^{infty} 2^{1-m} =
                                        2
                                        $$



                                        It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)





                                        $$
                                        sum_{n=0}^{infty} frac{n^2}{2^n} =
                                        sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
                                        sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
                                        sum_{m=1}^{infty} left{
                                        sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
                                        right}
                                        $$



                                        We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:



                                        $$
                                        sum_{n=0}^{m-1} frac{n}{2^n} =
                                        sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
                                        sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
                                        sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
                                        2 - left(m+1right)2^{1-m}
                                        $$



                                        Substituting:



                                        $$
                                        sum_{n=0}^{infty} frac{n^2}{2^n} =
                                        sum_{m=1}^{infty} left{
                                        2 - left[ 2 - left(m+1right)2^{1-m} right]
                                        right} =
                                        sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
                                        sum_{m=1}^{infty} left{
                                        left(m-1right)2^{1-m} + 2cdot 2^{1-m}
                                        right} =
                                        sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
                                        2 + 4 = 6
                                        $$



                                        Again, you can change the order of summations because all inner sums converge absolutely.






                                        share|cite|improve this answer









                                        $endgroup$



                                        There is an elementary and visually appealing solution, which is to think "matrix-like".



                                        Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:



                                        $$
                                        begin{align}
                                        && 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
                                        \ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                        \ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
                                        \ + && && && && && && + && 2^{-3} && + && cdots && +
                                        \ + && && && && && && && && + && ddots
                                        end{align}
                                        $$



                                        summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.



                                        What we just did is equivalent to:



                                        $$
                                        sum_{n=0}^{infty} frac{n}{2^n} =
                                        sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
                                        sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
                                        sum_{m=1}^{infty} 2^{1-m} =
                                        2
                                        $$



                                        It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)





                                        $$
                                        sum_{n=0}^{infty} frac{n^2}{2^n} =
                                        sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
                                        sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
                                        sum_{m=1}^{infty} left{
                                        sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
                                        right}
                                        $$



                                        We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:



                                        $$
                                        sum_{n=0}^{m-1} frac{n}{2^n} =
                                        sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
                                        sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
                                        sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
                                        2 - left(m+1right)2^{1-m}
                                        $$



                                        Substituting:



                                        $$
                                        sum_{n=0}^{infty} frac{n^2}{2^n} =
                                        sum_{m=1}^{infty} left{
                                        2 - left[ 2 - left(m+1right)2^{1-m} right]
                                        right} =
                                        sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
                                        sum_{m=1}^{infty} left{
                                        left(m-1right)2^{1-m} + 2cdot 2^{1-m}
                                        right} =
                                        sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
                                        2 + 4 = 6
                                        $$



                                        Again, you can change the order of summations because all inner sums converge absolutely.







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Dec 5 '13 at 17:42









                                        foninifonini

                                        1,78511038




                                        1,78511038























                                            9












                                            $begingroup$

                                            Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.



                                            Let's think of this in terms of power series. You noticed that you can write
                                            $$
                                            sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
                                            $$
                                            so, let's consider the power series
                                            $$
                                            f(x)=sum_{n=0}^{infty}n^2x^n.
                                            $$
                                            If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.



                                            Now, we note that
                                            $$
                                            f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
                                            $$
                                            But, notice that $int n^2x^{n-1},dx=nx^n$; so,
                                            $$tag{1}
                                            sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
                                            $$
                                            Now, we write
                                            $$tag{2}
                                            sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
                                            $$
                                            But, this last is a geometric series; so, as long as $lvert xrvert<1$,
                                            $$
                                            sum_{n=0}^{infty}x^n=frac{1}{1-x}.
                                            $$
                                            Plugging this back in to (2), we find that for $lvert xrvert<1$,
                                            $$
                                            sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
                                            $$
                                            But, plugging this back in to (1), we find that
                                            $$
                                            sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
                                            $$
                                            So, finally,
                                            $$
                                            f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
                                            $$
                                            Plugging in $x=frac{1}{2}$, we find
                                            $$
                                            sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
                                            $$






                                            share|cite|improve this answer









                                            $endgroup$


















                                              9












                                              $begingroup$

                                              Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.



                                              Let's think of this in terms of power series. You noticed that you can write
                                              $$
                                              sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
                                              $$
                                              so, let's consider the power series
                                              $$
                                              f(x)=sum_{n=0}^{infty}n^2x^n.
                                              $$
                                              If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.



                                              Now, we note that
                                              $$
                                              f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
                                              $$
                                              But, notice that $int n^2x^{n-1},dx=nx^n$; so,
                                              $$tag{1}
                                              sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
                                              $$
                                              Now, we write
                                              $$tag{2}
                                              sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
                                              $$
                                              But, this last is a geometric series; so, as long as $lvert xrvert<1$,
                                              $$
                                              sum_{n=0}^{infty}x^n=frac{1}{1-x}.
                                              $$
                                              Plugging this back in to (2), we find that for $lvert xrvert<1$,
                                              $$
                                              sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
                                              $$
                                              But, plugging this back in to (1), we find that
                                              $$
                                              sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
                                              $$
                                              So, finally,
                                              $$
                                              f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
                                              $$
                                              Plugging in $x=frac{1}{2}$, we find
                                              $$
                                              sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
                                              $$






                                              share|cite|improve this answer









                                              $endgroup$
















                                                9












                                                9








                                                9





                                                $begingroup$

                                                Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.



                                                Let's think of this in terms of power series. You noticed that you can write
                                                $$
                                                sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
                                                $$
                                                so, let's consider the power series
                                                $$
                                                f(x)=sum_{n=0}^{infty}n^2x^n.
                                                $$
                                                If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.



                                                Now, we note that
                                                $$
                                                f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
                                                $$
                                                But, notice that $int n^2x^{n-1},dx=nx^n$; so,
                                                $$tag{1}
                                                sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
                                                $$
                                                Now, we write
                                                $$tag{2}
                                                sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
                                                $$
                                                But, this last is a geometric series; so, as long as $lvert xrvert<1$,
                                                $$
                                                sum_{n=0}^{infty}x^n=frac{1}{1-x}.
                                                $$
                                                Plugging this back in to (2), we find that for $lvert xrvert<1$,
                                                $$
                                                sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
                                                $$
                                                But, plugging this back in to (1), we find that
                                                $$
                                                sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
                                                $$
                                                So, finally,
                                                $$
                                                f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
                                                $$
                                                Plugging in $x=frac{1}{2}$, we find
                                                $$
                                                sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
                                                $$






                                                share|cite|improve this answer









                                                $endgroup$



                                                Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.



                                                Let's think of this in terms of power series. You noticed that you can write
                                                $$
                                                sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
                                                $$
                                                so, let's consider the power series
                                                $$
                                                f(x)=sum_{n=0}^{infty}n^2x^n.
                                                $$
                                                If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.



                                                Now, we note that
                                                $$
                                                f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
                                                $$
                                                But, notice that $int n^2x^{n-1},dx=nx^n$; so,
                                                $$tag{1}
                                                sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
                                                $$
                                                Now, we write
                                                $$tag{2}
                                                sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
                                                $$
                                                But, this last is a geometric series; so, as long as $lvert xrvert<1$,
                                                $$
                                                sum_{n=0}^{infty}x^n=frac{1}{1-x}.
                                                $$
                                                Plugging this back in to (2), we find that for $lvert xrvert<1$,
                                                $$
                                                sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
                                                $$
                                                But, plugging this back in to (1), we find that
                                                $$
                                                sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
                                                $$
                                                So, finally,
                                                $$
                                                f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
                                                $$
                                                Plugging in $x=frac{1}{2}$, we find
                                                $$
                                                sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
                                                $$







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Dec 5 '13 at 13:45









                                                Nick PetersonNick Peterson

                                                26.3k23960




                                                26.3k23960























                                                    4












                                                    $begingroup$

                                                    First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
                                                    Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
                                                    $$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
                                                    Finally the desired sum is $S=2S_2-S_1=6$.






                                                    share|cite|improve this answer









                                                    $endgroup$


















                                                      4












                                                      $begingroup$

                                                      First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
                                                      Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
                                                      $$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
                                                      Finally the desired sum is $S=2S_2-S_1=6$.






                                                      share|cite|improve this answer









                                                      $endgroup$
















                                                        4












                                                        4








                                                        4





                                                        $begingroup$

                                                        First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
                                                        Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
                                                        $$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
                                                        Finally the desired sum is $S=2S_2-S_1=6$.






                                                        share|cite|improve this answer









                                                        $endgroup$



                                                        First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
                                                        Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
                                                        $$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
                                                        Finally the desired sum is $S=2S_2-S_1=6$.







                                                        share|cite|improve this answer












                                                        share|cite|improve this answer



                                                        share|cite|improve this answer










                                                        answered Dec 5 '13 at 16:15









                                                        user1337user1337

                                                        16.6k43391




                                                        16.6k43391






























                                                            draft saved

                                                            draft discarded




















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid



                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.


                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function () {
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f593996%2fhow-to-prove-sum-n-0-infty-fracn22n-6%23new-answer', 'question_page');
                                                            }
                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown







                                                            Popular posts from this blog

                                                            Bressuire

                                                            Cabo Verde

                                                            Gyllenstierna