How to prove $sum_{n=0}^{infty} frac{n^2}{2^n} = 6$?
$begingroup$
I'd like to find out why
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = 6
end{align}
I tried to rewrite it into a geometric series
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
end{align}
But I don't know what to do with the $n^2$.
calculus real-analysis sequences-and-series analysis
$endgroup$
add a comment |
$begingroup$
I'd like to find out why
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = 6
end{align}
I tried to rewrite it into a geometric series
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
end{align}
But I don't know what to do with the $n^2$.
calculus real-analysis sequences-and-series analysis
$endgroup$
add a comment |
$begingroup$
I'd like to find out why
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = 6
end{align}
I tried to rewrite it into a geometric series
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
end{align}
But I don't know what to do with the $n^2$.
calculus real-analysis sequences-and-series analysis
$endgroup$
I'd like to find out why
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = 6
end{align}
I tried to rewrite it into a geometric series
begin{align}
sum_{n=0}^{infty} frac{n^2}{2^n} = sum_{n=0}^{infty} Big(frac{1}{2}Big)^nn^2
end{align}
But I don't know what to do with the $n^2$.
calculus real-analysis sequences-and-series analysis
calculus real-analysis sequences-and-series analysis
edited Jan 7 '14 at 6:09
Nick Peterson
26.3k23960
26.3k23960
asked Dec 5 '13 at 13:16
TheWaveLadTheWaveLad
897720
897720
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
First observe that the sum converges (by, say, the root test).
We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.
Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.
Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.
One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.
$endgroup$
add a comment |
$begingroup$
If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$
Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$
Differentiating wrt $r$ (fixed sign error!)
$$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$
Here $displaystyle r=frac12$
$endgroup$
$begingroup$
You had a sign error after you differentiated, but it is fixed!
$endgroup$
– user452
Dec 6 '13 at 2:17
$begingroup$
@trb456, thanks for your rectification
$endgroup$
– lab bhattacharjee
Dec 6 '13 at 3:48
add a comment |
$begingroup$
Consider
$$
frac{1}{1-z} = sum_{n=0}^{infty} z^n
$$
Differentiating and multiplying by $z$, one has
$$
frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
$$
Repeating the above process,
$$
sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
$$
Now plug in $z=1/2$
$endgroup$
add a comment |
$begingroup$
There is an elementary and visually appealing solution, which is to think "matrix-like".
Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:
$$
begin{align}
&& 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
\ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && && && + && 2^{-3} && + && cdots && +
\ + && && && && && && && && + && ddots
end{align}
$$
summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.
What we just did is equivalent to:
$$
sum_{n=0}^{infty} frac{n}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
sum_{m=1}^{infty} 2^{1-m} =
2
$$
It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
sum_{m=1}^{infty} left{
sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
right}
$$
We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:
$$
sum_{n=0}^{m-1} frac{n}{2^n} =
sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
2 - left(m+1right)2^{1-m}
$$
Substituting:
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{m=1}^{infty} left{
2 - left[ 2 - left(m+1right)2^{1-m} right]
right} =
sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
sum_{m=1}^{infty} left{
left(m-1right)2^{1-m} + 2cdot 2^{1-m}
right} =
sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
2 + 4 = 6
$$
Again, you can change the order of summations because all inner sums converge absolutely.
$endgroup$
add a comment |
$begingroup$
Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.
Let's think of this in terms of power series. You noticed that you can write
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
$$
so, let's consider the power series
$$
f(x)=sum_{n=0}^{infty}n^2x^n.
$$
If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.
Now, we note that
$$
f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
$$
But, notice that $int n^2x^{n-1},dx=nx^n$; so,
$$tag{1}
sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
$$
Now, we write
$$tag{2}
sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
$$
But, this last is a geometric series; so, as long as $lvert xrvert<1$,
$$
sum_{n=0}^{infty}x^n=frac{1}{1-x}.
$$
Plugging this back in to (2), we find that for $lvert xrvert<1$,
$$
sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
$$
But, plugging this back in to (1), we find that
$$
sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
$$
So, finally,
$$
f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
$$
Plugging in $x=frac{1}{2}$, we find
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
$$
$endgroup$
add a comment |
$begingroup$
First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
$$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
Finally the desired sum is $S=2S_2-S_1=6$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f593996%2fhow-to-prove-sum-n-0-infty-fracn22n-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First observe that the sum converges (by, say, the root test).
We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.
Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.
Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.
One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.
$endgroup$
add a comment |
$begingroup$
First observe that the sum converges (by, say, the root test).
We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.
Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.
Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.
One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.
$endgroup$
add a comment |
$begingroup$
First observe that the sum converges (by, say, the root test).
We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.
Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.
Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.
One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.
$endgroup$
First observe that the sum converges (by, say, the root test).
We already know that $displaystyle R := sum_{n=0}^infty frac{1}{2^n} = 2$.
Let $S$ be the given sum. Then $displaystyle S = 2S - S = sum_{n=0}^infty frac{2n+1}{2^n}$.
Now use the same trick to compute $displaystyle T := sum_{n=0}^infty frac{n}{2^n}$: we have $displaystyle T = 2T - T = sum_{n=0}^infty frac{1}{2^n} = R = 2$. Hence $S = 2T + R = 6$.
One can continue like this to compute $displaystyle X:= sum_{n=0}^infty frac{n^3}{2^n}$. We have $displaystyle X = 2X-X = sum_{n=0}^infty frac{3n^2+3n+1}{2^n} = 3S+3T+R = 26$. Sums with larger powers can be computed in the same way.
edited Jan 3 '14 at 0:18
answered Dec 5 '13 at 13:22
universalsetuniversalset
7,3411330
7,3411330
add a comment |
add a comment |
$begingroup$
If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$
Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$
Differentiating wrt $r$ (fixed sign error!)
$$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$
Here $displaystyle r=frac12$
$endgroup$
$begingroup$
You had a sign error after you differentiated, but it is fixed!
$endgroup$
– user452
Dec 6 '13 at 2:17
$begingroup$
@trb456, thanks for your rectification
$endgroup$
– lab bhattacharjee
Dec 6 '13 at 3:48
add a comment |
$begingroup$
If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$
Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$
Differentiating wrt $r$ (fixed sign error!)
$$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$
Here $displaystyle r=frac12$
$endgroup$
$begingroup$
You had a sign error after you differentiated, but it is fixed!
$endgroup$
– user452
Dec 6 '13 at 2:17
$begingroup$
@trb456, thanks for your rectification
$endgroup$
– lab bhattacharjee
Dec 6 '13 at 3:48
add a comment |
$begingroup$
If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$
Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$
Differentiating wrt $r$ (fixed sign error!)
$$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$
Here $displaystyle r=frac12$
$endgroup$
If Calculus is allowed, using infinite geometric series formula for $|r|<1$ $$sum_{0le n<infty}r^n=frac1{1-r}$$
Differentiating wrt $r$ $$sum_{0le n<infty}nr^{n-1}=frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}nr^n=frac r{(1-r)^2}=frac{1-(1-r)}{(1-r)^2}=frac1{(1-r)^2}-frac1{(1-r)}$$
Differentiating wrt $r$ (fixed sign error!)
$$implies sum_{0le n<infty}n^2r^{n-1}=frac2{(1-r)^3}-frac1{(1-r)^2}$$
$$implies sum_{0le n<infty}n^2r^n=frac{2r}{(1-r)^3}-frac r{(1-r)^2}$$
Here $displaystyle r=frac12$
edited Dec 6 '13 at 2:33
user452
answered Dec 5 '13 at 13:28
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
$begingroup$
You had a sign error after you differentiated, but it is fixed!
$endgroup$
– user452
Dec 6 '13 at 2:17
$begingroup$
@trb456, thanks for your rectification
$endgroup$
– lab bhattacharjee
Dec 6 '13 at 3:48
add a comment |
$begingroup$
You had a sign error after you differentiated, but it is fixed!
$endgroup$
– user452
Dec 6 '13 at 2:17
$begingroup$
@trb456, thanks for your rectification
$endgroup$
– lab bhattacharjee
Dec 6 '13 at 3:48
$begingroup$
You had a sign error after you differentiated, but it is fixed!
$endgroup$
– user452
Dec 6 '13 at 2:17
$begingroup$
You had a sign error after you differentiated, but it is fixed!
$endgroup$
– user452
Dec 6 '13 at 2:17
$begingroup$
@trb456, thanks for your rectification
$endgroup$
– lab bhattacharjee
Dec 6 '13 at 3:48
$begingroup$
@trb456, thanks for your rectification
$endgroup$
– lab bhattacharjee
Dec 6 '13 at 3:48
add a comment |
$begingroup$
Consider
$$
frac{1}{1-z} = sum_{n=0}^{infty} z^n
$$
Differentiating and multiplying by $z$, one has
$$
frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
$$
Repeating the above process,
$$
sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
$$
Now plug in $z=1/2$
$endgroup$
add a comment |
$begingroup$
Consider
$$
frac{1}{1-z} = sum_{n=0}^{infty} z^n
$$
Differentiating and multiplying by $z$, one has
$$
frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
$$
Repeating the above process,
$$
sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
$$
Now plug in $z=1/2$
$endgroup$
add a comment |
$begingroup$
Consider
$$
frac{1}{1-z} = sum_{n=0}^{infty} z^n
$$
Differentiating and multiplying by $z$, one has
$$
frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
$$
Repeating the above process,
$$
sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
$$
Now plug in $z=1/2$
$endgroup$
Consider
$$
frac{1}{1-z} = sum_{n=0}^{infty} z^n
$$
Differentiating and multiplying by $z$, one has
$$
frac{z}{(1-z)^2} = zsum_{n=1}^{infty} nz^{n-1} = sum_{n=1}^{infty} nz^n
$$
Repeating the above process,
$$
sum_{n=1}^{infty} n^2z^n = frac{z(1+z)}{(1-z)^3}
$$
Now plug in $z=1/2$
answered Dec 5 '13 at 13:28
Prahlad VaidyanathanPrahlad Vaidyanathan
26.1k12152
26.1k12152
add a comment |
add a comment |
$begingroup$
There is an elementary and visually appealing solution, which is to think "matrix-like".
Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:
$$
begin{align}
&& 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
\ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && && && + && 2^{-3} && + && cdots && +
\ + && && && && && && && && + && ddots
end{align}
$$
summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.
What we just did is equivalent to:
$$
sum_{n=0}^{infty} frac{n}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
sum_{m=1}^{infty} 2^{1-m} =
2
$$
It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
sum_{m=1}^{infty} left{
sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
right}
$$
We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:
$$
sum_{n=0}^{m-1} frac{n}{2^n} =
sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
2 - left(m+1right)2^{1-m}
$$
Substituting:
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{m=1}^{infty} left{
2 - left[ 2 - left(m+1right)2^{1-m} right]
right} =
sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
sum_{m=1}^{infty} left{
left(m-1right)2^{1-m} + 2cdot 2^{1-m}
right} =
sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
2 + 4 = 6
$$
Again, you can change the order of summations because all inner sums converge absolutely.
$endgroup$
add a comment |
$begingroup$
There is an elementary and visually appealing solution, which is to think "matrix-like".
Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:
$$
begin{align}
&& 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
\ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && && && + && 2^{-3} && + && cdots && +
\ + && && && && && && && && + && ddots
end{align}
$$
summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.
What we just did is equivalent to:
$$
sum_{n=0}^{infty} frac{n}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
sum_{m=1}^{infty} 2^{1-m} =
2
$$
It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
sum_{m=1}^{infty} left{
sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
right}
$$
We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:
$$
sum_{n=0}^{m-1} frac{n}{2^n} =
sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
2 - left(m+1right)2^{1-m}
$$
Substituting:
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{m=1}^{infty} left{
2 - left[ 2 - left(m+1right)2^{1-m} right]
right} =
sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
sum_{m=1}^{infty} left{
left(m-1right)2^{1-m} + 2cdot 2^{1-m}
right} =
sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
2 + 4 = 6
$$
Again, you can change the order of summations because all inner sums converge absolutely.
$endgroup$
add a comment |
$begingroup$
There is an elementary and visually appealing solution, which is to think "matrix-like".
Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:
$$
begin{align}
&& 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
\ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && && && + && 2^{-3} && + && cdots && +
\ + && && && && && && && && + && ddots
end{align}
$$
summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.
What we just did is equivalent to:
$$
sum_{n=0}^{infty} frac{n}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
sum_{m=1}^{infty} 2^{1-m} =
2
$$
It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
sum_{m=1}^{infty} left{
sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
right}
$$
We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:
$$
sum_{n=0}^{m-1} frac{n}{2^n} =
sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
2 - left(m+1right)2^{1-m}
$$
Substituting:
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{m=1}^{infty} left{
2 - left[ 2 - left(m+1right)2^{1-m} right]
right} =
sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
sum_{m=1}^{infty} left{
left(m-1right)2^{1-m} + 2cdot 2^{1-m}
right} =
sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
2 + 4 = 6
$$
Again, you can change the order of summations because all inner sums converge absolutely.
$endgroup$
There is an elementary and visually appealing solution, which is to think "matrix-like".
Knowing that $sum_{n=0}^{infty} 2^{-n}=2$, the sum $sum_{n=0}^{infty}n/2^n$ can be rewritten as:
$$
begin{align}
&& 0/2^0 && + && 1/2^1 && + && 2/2^2 && + && 3/2^3 && + && cdots && =
\ = && && + && 2^{-1} && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && + && 2^{-2} && + && 2^{-3} && + && cdots && +
\ + && && && && && && + && 2^{-3} && + && cdots && +
\ + && && && && && && && && + && ddots
end{align}
$$
summed first in the columns, then in the rows. It doesn't matter which direction you sum first, because all sums in both directions converge absolutely. So we can sum first in the rows, and then in the columns. Each row-sum is just a geometric series; the $m$-th row-sum is $r_m=sum_{n=m}^{infty} 2^{-n}=2^{1-m}$. Now summing up all rows, we have $sum r_m = 2$.
What we just did is equivalent to:
$$
sum_{n=0}^{infty} frac{n}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{1}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} 2^{-n}=
sum_{m=1}^{infty} 2^{1-m} =
2
$$
It's not hard to do it for a three-dimensional matrix, unless you try to draw it :)
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{n=0}^{infty} sum_{m=1}^{n} frac{n}{2^n} =
sum_{m=1}^{infty} sum_{n=m}^{infty} frac{n}{2^n} =
sum_{m=1}^{infty} left{
sum_{n=0}^{infty} frac{n}{2^n} - sum_{n=0}^{m-1} frac{n}{2^n}
right}
$$
We can work out $sum_{n=0}^{m-1} frac{n}{2^n}$ in the same way we did for $sum_{n=0}^{infty} frac{n}{2^n}$:
$$
sum_{n=0}^{m-1} frac{n}{2^n} =
sum_{n=0}^{m-1} sum_{l=1}^{n} frac{1}{2^n} =
sum_{l=1}^{m-1} sum_{n=l}^{m-1} 2^{-n} =
sum_{l=1}^{m-1} left{ 2^{1-l} - 2^{1-m} right} =
2 - left(m+1right)2^{1-m}
$$
Substituting:
$$
sum_{n=0}^{infty} frac{n^2}{2^n} =
sum_{m=1}^{infty} left{
2 - left[ 2 - left(m+1right)2^{1-m} right]
right} =
sum_{m=1}^{infty} left(m+1right)2^{1-m} = \
sum_{m=1}^{infty} left{
left(m-1right)2^{1-m} + 2cdot 2^{1-m}
right} =
sum_{m=0}^{infty} mcdot 2^{-m} + 4sum_{m=1}^{infty} 2^{-m} =
2 + 4 = 6
$$
Again, you can change the order of summations because all inner sums converge absolutely.
answered Dec 5 '13 at 17:42
foninifonini
1,78511038
1,78511038
add a comment |
add a comment |
$begingroup$
Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.
Let's think of this in terms of power series. You noticed that you can write
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
$$
so, let's consider the power series
$$
f(x)=sum_{n=0}^{infty}n^2x^n.
$$
If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.
Now, we note that
$$
f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
$$
But, notice that $int n^2x^{n-1},dx=nx^n$; so,
$$tag{1}
sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
$$
Now, we write
$$tag{2}
sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
$$
But, this last is a geometric series; so, as long as $lvert xrvert<1$,
$$
sum_{n=0}^{infty}x^n=frac{1}{1-x}.
$$
Plugging this back in to (2), we find that for $lvert xrvert<1$,
$$
sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
$$
But, plugging this back in to (1), we find that
$$
sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
$$
So, finally,
$$
f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
$$
Plugging in $x=frac{1}{2}$, we find
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
$$
$endgroup$
add a comment |
$begingroup$
Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.
Let's think of this in terms of power series. You noticed that you can write
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
$$
so, let's consider the power series
$$
f(x)=sum_{n=0}^{infty}n^2x^n.
$$
If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.
Now, we note that
$$
f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
$$
But, notice that $int n^2x^{n-1},dx=nx^n$; so,
$$tag{1}
sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
$$
Now, we write
$$tag{2}
sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
$$
But, this last is a geometric series; so, as long as $lvert xrvert<1$,
$$
sum_{n=0}^{infty}x^n=frac{1}{1-x}.
$$
Plugging this back in to (2), we find that for $lvert xrvert<1$,
$$
sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
$$
But, plugging this back in to (1), we find that
$$
sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
$$
So, finally,
$$
f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
$$
Plugging in $x=frac{1}{2}$, we find
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
$$
$endgroup$
add a comment |
$begingroup$
Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.
Let's think of this in terms of power series. You noticed that you can write
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
$$
so, let's consider the power series
$$
f(x)=sum_{n=0}^{infty}n^2x^n.
$$
If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.
Now, we note that
$$
f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
$$
But, notice that $int n^2x^{n-1},dx=nx^n$; so,
$$tag{1}
sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
$$
Now, we write
$$tag{2}
sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
$$
But, this last is a geometric series; so, as long as $lvert xrvert<1$,
$$
sum_{n=0}^{infty}x^n=frac{1}{1-x}.
$$
Plugging this back in to (2), we find that for $lvert xrvert<1$,
$$
sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
$$
But, plugging this back in to (1), we find that
$$
sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
$$
So, finally,
$$
f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
$$
Plugging in $x=frac{1}{2}$, we find
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
$$
$endgroup$
Let me show you a slightly different approach; this approach is very powerful, and can be used to compute values for a large number of series.
Let's think of this in terms of power series. You noticed that you can write
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=sum_{n=0}^{infty}n^2left(frac{1}{2}right)^n;
$$
so, let's consider the power series
$$
f(x)=sum_{n=0}^{infty}n^2x^n.
$$
If we can find a simpler expression for the function $f(x)$, and if $frac{1}{2}$ lies within its interval of convergence, then your series is exactly $f(frac{1}{2})$.
Now, we note that
$$
f(x)=underbrace{0}_{n=0}+sum_{n=1}^{infty}n^2x^n=xsum_{n=1}^{infty}n^2x^{n-1}.
$$
But, notice that $int n^2x^{n-1},dx=nx^n$; so,
$$tag{1}
sum_{n=1}^{infty}n^2 x^{n-1}=frac{d}{dx}left[sum_{n=0}^{infty}nx^nright].
$$
Now, we write
$$tag{2}
sum_{n=0}^{infty}nx^n=underbrace{0}_{n=0}+xsum_{n=1}^{infty}nx^{n-1}=xfrac{d}{dx}left[sum_{n=0}^{infty}x^nright].
$$
But, this last is a geometric series; so, as long as $lvert xrvert<1$,
$$
sum_{n=0}^{infty}x^n=frac{1}{1-x}.
$$
Plugging this back in to (2), we find that for $lvert xrvert<1$,
$$
sum_{n=0}^{infty}nx^n=xfrac{d}{dx}left[frac{1}{1-x}right]=xcdotfrac{1}{(1-x)^2}=frac{x}{(1-x)^2}.
$$
But, plugging this back in to (1), we find that
$$
sum_{n=1}^{infty}n^2x^{n-1}=frac{d}{dx}left[frac{x}{(1-x)^2}right]=frac{x+1}{(1-x)^3}
$$
So, finally,
$$
f(x)=xcdotfrac{x+1}{(1-x)^3}=frac{x(x+1)}{(1-x)^3}.
$$
Plugging in $x=frac{1}{2}$, we find
$$
sum_{n=0}^{infty}frac{n^2}{2^n}=fleft(frac{1}{2}right)=6.
$$
answered Dec 5 '13 at 13:45
Nick PetersonNick Peterson
26.3k23960
26.3k23960
add a comment |
add a comment |
$begingroup$
First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
$$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
Finally the desired sum is $S=2S_2-S_1=6$.
$endgroup$
add a comment |
$begingroup$
First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
$$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
Finally the desired sum is $S=2S_2-S_1=6$.
$endgroup$
add a comment |
$begingroup$
First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
$$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
Finally the desired sum is $S=2S_2-S_1=6$.
$endgroup$
First we compute the sum $S_1=sum_{n=1}^infty frac{n}{2^n}$ using the identity $n=sum_{k=1}^n1$ $$S_1=sum_{n=1}^infty frac{n}{2^n}=sum_{n=1}^infty sum_{k=1}^n frac{1}{2^n}=sum_{ k leq n }frac{1}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{1}{2^n}=sum_{k=1}^infty frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{1}{2^k}=2. $$
Next we compute the sum $S_2=sum_{n=1}^infty frac{n+n^2}{2^{n+1}}$ using the identity $frac{n+n^2}{2}=sum_{k=1}^n k$
$$S_2=sum_{n=1}^infty sum_{k=1}^n frac{k}{2^n}=sum_{k leq n} frac{k}{2^n}=sum_{k=1}^infty sum_{n=k}^infty frac{k}{2^n}=sum_{k=1}^infty k frac{1/2^k}{1-1/2}=2 sum_{k=1}^infty frac{k}{2^k}=2S_1=4. $$
Finally the desired sum is $S=2S_2-S_1=6$.
answered Dec 5 '13 at 16:15
user1337user1337
16.6k43391
16.6k43391
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f593996%2fhow-to-prove-sum-n-0-infty-fracn22n-6%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown