Finding roots with mod and greatest integer
$begingroup$
I have to find the roots to this equation
$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.
I don’t know how to go about it, hit and trial gave me nothing, help me out.
polynomials roots
$endgroup$
add a comment |
$begingroup$
I have to find the roots to this equation
$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.
I don’t know how to go about it, hit and trial gave me nothing, help me out.
polynomials roots
$endgroup$
$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23
add a comment |
$begingroup$
I have to find the roots to this equation
$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.
I don’t know how to go about it, hit and trial gave me nothing, help me out.
polynomials roots
$endgroup$
I have to find the roots to this equation
$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.
I don’t know how to go about it, hit and trial gave me nothing, help me out.
polynomials roots
polynomials roots
asked Dec 24 '18 at 10:17
user601297user601297
31419
31419
$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23
add a comment |
$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23
$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23
$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$
$[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$
$implies x^2-x+{x}-1=0$
$impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$
Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$
In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$
In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$
The final answer is $x=sqrt2$.
$endgroup$
add a comment |
$begingroup$
Here is how I solved it:
Consider x in (k, k+1]
x = k+r
|x²-ceil(x)| = |(k+r)²-(k+1)| = 1
Case1: (k+r)²-(k+1) >= 0
|(k+r)²-(k+1)| = (k+r)²-k-1 = 1
(k²+2kr+r²)-k = 2
1r² +2kr +k²-k-2 = 0
r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
= -k +/- sqrt(k²-(k²-k-2))
= -k +/- sqrt(k²-k²+k+2)
= -k +/- sqrt(k+2)
= {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
For real roots, k must be in {-2, -1, ...}
r must be within (0, 1]
0 < r1:
-k + sqrt(k+2) > 0
sqrt(k+2) > k
true for k <= 0, consider k > 0
k+2 > k²
1k² - 1k - 2 < 0
(1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
0 < k < 2
k = 1
k in {-2, -1, 0, 1}
r1 <= 1:
-k + sqrt(k+2) <= 1
sqrt(k+2) <= 1+k
false for k < -1
k+2 <= (1+k)² = k²+2k+1
0 <= k² + k - 1
0 <= (-1)² + (-1) - 1 = -1, false
0 <= (0)² + (0) - 1 = -1, false
0 <= (1)² + (1) - 1 = 1, true
k = 1
r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
0 < r2:
-k - sqrt(k+2) > 0
k < -sqrt(k+2), false for k >= 0
-1 < -sqrt(-1+2), 1 > sqrt(1), false
-2 < -sqrt(-2+2), 2 > sqrt(0), true
k = -2
r2 <= 1:
r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false
Case2: (k+r)²-(k+1) < 0
|(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
-(k²+2kr+r²)+k = 0
k²+2kr+r²-k = 0
1r² + 2kr + k²-k = 0
r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
= -k +/- sqrt(k² - (k²-k))
= -k +/- sqrt(k)
= {-k - sqrt(k), -k + sqrt(k)}
For real roots, k must be in {0, 1, ...}
r must be within (0, 1]
0 < r1 = -k - sqrt(k) is false for those k
0 < r2:
0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
No root candidates for Case2
The only root found is sqrt(3) when Case1 pertains, a simple test shows that
this is indeed the root:
|sqrt(3)²-ceil(sqrt(3))| = 1
|3-2| = 1
1 = 1
$endgroup$
$begingroup$
Please use mathjax to format answers. This is particularly important for answerers to do.
$endgroup$
– amWhy
Dec 24 '18 at 12:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051124%2ffinding-roots-with-mod-and-greatest-integer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$
$[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$
$implies x^2-x+{x}-1=0$
$impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$
Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$
In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$
In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$
The final answer is $x=sqrt2$.
$endgroup$
add a comment |
$begingroup$
$|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$
$[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$
$implies x^2-x+{x}-1=0$
$impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$
Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$
In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$
In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$
The final answer is $x=sqrt2$.
$endgroup$
add a comment |
$begingroup$
$|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$
$[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$
$implies x^2-x+{x}-1=0$
$impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$
Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$
In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$
In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$
The final answer is $x=sqrt2$.
$endgroup$
$|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$
$[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$
$implies x^2-x+{x}-1=0$
$impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$
Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$
In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$
In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$
The final answer is $x=sqrt2$.
edited Dec 24 '18 at 11:38
answered Dec 24 '18 at 10:55
Shubham JohriShubham Johri
5,172717
5,172717
add a comment |
add a comment |
$begingroup$
Here is how I solved it:
Consider x in (k, k+1]
x = k+r
|x²-ceil(x)| = |(k+r)²-(k+1)| = 1
Case1: (k+r)²-(k+1) >= 0
|(k+r)²-(k+1)| = (k+r)²-k-1 = 1
(k²+2kr+r²)-k = 2
1r² +2kr +k²-k-2 = 0
r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
= -k +/- sqrt(k²-(k²-k-2))
= -k +/- sqrt(k²-k²+k+2)
= -k +/- sqrt(k+2)
= {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
For real roots, k must be in {-2, -1, ...}
r must be within (0, 1]
0 < r1:
-k + sqrt(k+2) > 0
sqrt(k+2) > k
true for k <= 0, consider k > 0
k+2 > k²
1k² - 1k - 2 < 0
(1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
0 < k < 2
k = 1
k in {-2, -1, 0, 1}
r1 <= 1:
-k + sqrt(k+2) <= 1
sqrt(k+2) <= 1+k
false for k < -1
k+2 <= (1+k)² = k²+2k+1
0 <= k² + k - 1
0 <= (-1)² + (-1) - 1 = -1, false
0 <= (0)² + (0) - 1 = -1, false
0 <= (1)² + (1) - 1 = 1, true
k = 1
r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
0 < r2:
-k - sqrt(k+2) > 0
k < -sqrt(k+2), false for k >= 0
-1 < -sqrt(-1+2), 1 > sqrt(1), false
-2 < -sqrt(-2+2), 2 > sqrt(0), true
k = -2
r2 <= 1:
r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false
Case2: (k+r)²-(k+1) < 0
|(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
-(k²+2kr+r²)+k = 0
k²+2kr+r²-k = 0
1r² + 2kr + k²-k = 0
r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
= -k +/- sqrt(k² - (k²-k))
= -k +/- sqrt(k)
= {-k - sqrt(k), -k + sqrt(k)}
For real roots, k must be in {0, 1, ...}
r must be within (0, 1]
0 < r1 = -k - sqrt(k) is false for those k
0 < r2:
0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
No root candidates for Case2
The only root found is sqrt(3) when Case1 pertains, a simple test shows that
this is indeed the root:
|sqrt(3)²-ceil(sqrt(3))| = 1
|3-2| = 1
1 = 1
$endgroup$
$begingroup$
Please use mathjax to format answers. This is particularly important for answerers to do.
$endgroup$
– amWhy
Dec 24 '18 at 12:35
add a comment |
$begingroup$
Here is how I solved it:
Consider x in (k, k+1]
x = k+r
|x²-ceil(x)| = |(k+r)²-(k+1)| = 1
Case1: (k+r)²-(k+1) >= 0
|(k+r)²-(k+1)| = (k+r)²-k-1 = 1
(k²+2kr+r²)-k = 2
1r² +2kr +k²-k-2 = 0
r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
= -k +/- sqrt(k²-(k²-k-2))
= -k +/- sqrt(k²-k²+k+2)
= -k +/- sqrt(k+2)
= {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
For real roots, k must be in {-2, -1, ...}
r must be within (0, 1]
0 < r1:
-k + sqrt(k+2) > 0
sqrt(k+2) > k
true for k <= 0, consider k > 0
k+2 > k²
1k² - 1k - 2 < 0
(1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
0 < k < 2
k = 1
k in {-2, -1, 0, 1}
r1 <= 1:
-k + sqrt(k+2) <= 1
sqrt(k+2) <= 1+k
false for k < -1
k+2 <= (1+k)² = k²+2k+1
0 <= k² + k - 1
0 <= (-1)² + (-1) - 1 = -1, false
0 <= (0)² + (0) - 1 = -1, false
0 <= (1)² + (1) - 1 = 1, true
k = 1
r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
0 < r2:
-k - sqrt(k+2) > 0
k < -sqrt(k+2), false for k >= 0
-1 < -sqrt(-1+2), 1 > sqrt(1), false
-2 < -sqrt(-2+2), 2 > sqrt(0), true
k = -2
r2 <= 1:
r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false
Case2: (k+r)²-(k+1) < 0
|(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
-(k²+2kr+r²)+k = 0
k²+2kr+r²-k = 0
1r² + 2kr + k²-k = 0
r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
= -k +/- sqrt(k² - (k²-k))
= -k +/- sqrt(k)
= {-k - sqrt(k), -k + sqrt(k)}
For real roots, k must be in {0, 1, ...}
r must be within (0, 1]
0 < r1 = -k - sqrt(k) is false for those k
0 < r2:
0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
No root candidates for Case2
The only root found is sqrt(3) when Case1 pertains, a simple test shows that
this is indeed the root:
|sqrt(3)²-ceil(sqrt(3))| = 1
|3-2| = 1
1 = 1
$endgroup$
$begingroup$
Please use mathjax to format answers. This is particularly important for answerers to do.
$endgroup$
– amWhy
Dec 24 '18 at 12:35
add a comment |
$begingroup$
Here is how I solved it:
Consider x in (k, k+1]
x = k+r
|x²-ceil(x)| = |(k+r)²-(k+1)| = 1
Case1: (k+r)²-(k+1) >= 0
|(k+r)²-(k+1)| = (k+r)²-k-1 = 1
(k²+2kr+r²)-k = 2
1r² +2kr +k²-k-2 = 0
r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
= -k +/- sqrt(k²-(k²-k-2))
= -k +/- sqrt(k²-k²+k+2)
= -k +/- sqrt(k+2)
= {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
For real roots, k must be in {-2, -1, ...}
r must be within (0, 1]
0 < r1:
-k + sqrt(k+2) > 0
sqrt(k+2) > k
true for k <= 0, consider k > 0
k+2 > k²
1k² - 1k - 2 < 0
(1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
0 < k < 2
k = 1
k in {-2, -1, 0, 1}
r1 <= 1:
-k + sqrt(k+2) <= 1
sqrt(k+2) <= 1+k
false for k < -1
k+2 <= (1+k)² = k²+2k+1
0 <= k² + k - 1
0 <= (-1)² + (-1) - 1 = -1, false
0 <= (0)² + (0) - 1 = -1, false
0 <= (1)² + (1) - 1 = 1, true
k = 1
r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
0 < r2:
-k - sqrt(k+2) > 0
k < -sqrt(k+2), false for k >= 0
-1 < -sqrt(-1+2), 1 > sqrt(1), false
-2 < -sqrt(-2+2), 2 > sqrt(0), true
k = -2
r2 <= 1:
r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false
Case2: (k+r)²-(k+1) < 0
|(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
-(k²+2kr+r²)+k = 0
k²+2kr+r²-k = 0
1r² + 2kr + k²-k = 0
r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
= -k +/- sqrt(k² - (k²-k))
= -k +/- sqrt(k)
= {-k - sqrt(k), -k + sqrt(k)}
For real roots, k must be in {0, 1, ...}
r must be within (0, 1]
0 < r1 = -k - sqrt(k) is false for those k
0 < r2:
0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
No root candidates for Case2
The only root found is sqrt(3) when Case1 pertains, a simple test shows that
this is indeed the root:
|sqrt(3)²-ceil(sqrt(3))| = 1
|3-2| = 1
1 = 1
$endgroup$
Here is how I solved it:
Consider x in (k, k+1]
x = k+r
|x²-ceil(x)| = |(k+r)²-(k+1)| = 1
Case1: (k+r)²-(k+1) >= 0
|(k+r)²-(k+1)| = (k+r)²-k-1 = 1
(k²+2kr+r²)-k = 2
1r² +2kr +k²-k-2 = 0
r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
= -k +/- sqrt(k²-(k²-k-2))
= -k +/- sqrt(k²-k²+k+2)
= -k +/- sqrt(k+2)
= {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
For real roots, k must be in {-2, -1, ...}
r must be within (0, 1]
0 < r1:
-k + sqrt(k+2) > 0
sqrt(k+2) > k
true for k <= 0, consider k > 0
k+2 > k²
1k² - 1k - 2 < 0
(1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
0 < k < 2
k = 1
k in {-2, -1, 0, 1}
r1 <= 1:
-k + sqrt(k+2) <= 1
sqrt(k+2) <= 1+k
false for k < -1
k+2 <= (1+k)² = k²+2k+1
0 <= k² + k - 1
0 <= (-1)² + (-1) - 1 = -1, false
0 <= (0)² + (0) - 1 = -1, false
0 <= (1)² + (1) - 1 = 1, true
k = 1
r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
0 < r2:
-k - sqrt(k+2) > 0
k < -sqrt(k+2), false for k >= 0
-1 < -sqrt(-1+2), 1 > sqrt(1), false
-2 < -sqrt(-2+2), 2 > sqrt(0), true
k = -2
r2 <= 1:
r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false
Case2: (k+r)²-(k+1) < 0
|(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
-(k²+2kr+r²)+k = 0
k²+2kr+r²-k = 0
1r² + 2kr + k²-k = 0
r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
= -k +/- sqrt(k² - (k²-k))
= -k +/- sqrt(k)
= {-k - sqrt(k), -k + sqrt(k)}
For real roots, k must be in {0, 1, ...}
r must be within (0, 1]
0 < r1 = -k - sqrt(k) is false for those k
0 < r2:
0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
No root candidates for Case2
The only root found is sqrt(3) when Case1 pertains, a simple test shows that
this is indeed the root:
|sqrt(3)²-ceil(sqrt(3))| = 1
|3-2| = 1
1 = 1
answered Dec 24 '18 at 12:27
guest421guest421
1
1
$begingroup$
Please use mathjax to format answers. This is particularly important for answerers to do.
$endgroup$
– amWhy
Dec 24 '18 at 12:35
add a comment |
$begingroup$
Please use mathjax to format answers. This is particularly important for answerers to do.
$endgroup$
– amWhy
Dec 24 '18 at 12:35
$begingroup$
Please use mathjax to format answers. This is particularly important for answerers to do.
$endgroup$
– amWhy
Dec 24 '18 at 12:35
$begingroup$
Please use mathjax to format answers. This is particularly important for answerers to do.
$endgroup$
– amWhy
Dec 24 '18 at 12:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051124%2ffinding-roots-with-mod-and-greatest-integer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23