Finding roots with mod and greatest integer












1












$begingroup$


I have to find the roots to this equation



$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.



I don’t know how to go about it, hit and trial gave me nothing, help me out.










share|cite|improve this question









$endgroup$












  • $begingroup$
    $x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
    $endgroup$
    – kingW3
    Dec 24 '18 at 10:23


















1












$begingroup$


I have to find the roots to this equation



$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.



I don’t know how to go about it, hit and trial gave me nothing, help me out.










share|cite|improve this question









$endgroup$












  • $begingroup$
    $x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
    $endgroup$
    – kingW3
    Dec 24 '18 at 10:23
















1












1








1


2



$begingroup$


I have to find the roots to this equation



$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.



I don’t know how to go about it, hit and trial gave me nothing, help me out.










share|cite|improve this question









$endgroup$




I have to find the roots to this equation



$$|x^2-[x]| =1$$
Where [x] is the greatest integer function and |a| is the modulus of a.



I don’t know how to go about it, hit and trial gave me nothing, help me out.







polynomials roots






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 24 '18 at 10:17









user601297user601297

31419




31419












  • $begingroup$
    $x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
    $endgroup$
    – kingW3
    Dec 24 '18 at 10:23




















  • $begingroup$
    $x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
    $endgroup$
    – kingW3
    Dec 24 '18 at 10:23


















$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23






$begingroup$
$x^2$ must be an integer so $x=pmsqrt n$ for some $n$.
$endgroup$
– kingW3
Dec 24 '18 at 10:23












2 Answers
2






active

oldest

votes


















0












$begingroup$

$|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$



$[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$



$implies x^2-x+{x}-1=0$



$impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$



Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$



In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$



In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$



The final answer is $x=sqrt2$.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Here is how I solved it:





    Consider x in (k, k+1]
    x = k+r
    |x²-ceil(x)| = |(k+r)²-(k+1)| = 1



    Case1: (k+r)²-(k+1) >= 0
    |(k+r)²-(k+1)| = (k+r)²-k-1 = 1
    (k²+2kr+r²)-k = 2
    1r² +2kr +k²-k-2 = 0
    r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
    = -k +/- sqrt(k²-(k²-k-2))
    = -k +/- sqrt(k²-k²+k+2)
    = -k +/- sqrt(k+2)
    = {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
    For real roots, k must be in {-2, -1, ...}
    r must be within (0, 1]
    0 < r1:
    -k + sqrt(k+2) > 0
    sqrt(k+2) > k
    true for k <= 0, consider k > 0
    k+2 > k²
    1k² - 1k - 2 < 0
    (1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
    k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
    0 < k < 2
    k = 1
    k in {-2, -1, 0, 1}
    r1 <= 1:
    -k + sqrt(k+2) <= 1
    sqrt(k+2) <= 1+k
    false for k < -1
    k+2 <= (1+k)² = k²+2k+1
    0 <= k² + k - 1
    0 <= (-1)² + (-1) - 1 = -1, false
    0 <= (0)² + (0) - 1 = -1, false
    0 <= (1)² + (1) - 1 = 1, true
    k = 1
    r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
    root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
    0 < r2:
    -k - sqrt(k+2) > 0
    k < -sqrt(k+2), false for k >= 0
    -1 < -sqrt(-1+2), 1 > sqrt(1), false
    -2 < -sqrt(-2+2), 2 > sqrt(0), true
    k = -2
    r2 <= 1:
    r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false



    Case2: (k+r)²-(k+1) < 0
    |(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
    -(k²+2kr+r²)+k = 0
    k²+2kr+r²-k = 0
    1r² + 2kr + k²-k = 0
    r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
    = -k +/- sqrt(k² - (k²-k))
    = -k +/- sqrt(k)
    = {-k - sqrt(k), -k + sqrt(k)}
    For real roots, k must be in {0, 1, ...}
    r must be within (0, 1]
    0 < r1 = -k - sqrt(k) is false for those k
    0 < r2:
    0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
    No root candidates for Case2



    The only root found is sqrt(3) when Case1 pertains, a simple test shows that
    this is indeed the root:
    |sqrt(3)²-ceil(sqrt(3))| = 1
    |3-2| = 1
    1 = 1








    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Please use mathjax to format answers. This is particularly important for answerers to do.
      $endgroup$
      – amWhy
      Dec 24 '18 at 12:35











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051124%2ffinding-roots-with-mod-and-greatest-integer%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$



    $[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$



    $implies x^2-x+{x}-1=0$



    $impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$



    Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$



    In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$



    In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$



    The final answer is $x=sqrt2$.






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      $|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$



      $[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$



      $implies x^2-x+{x}-1=0$



      $impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$



      Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$



      In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$



      In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$



      The final answer is $x=sqrt2$.






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        $|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$



        $[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$



        $implies x^2-x+{x}-1=0$



        $impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$



        Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$



        In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$



        In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$



        The final answer is $x=sqrt2$.






        share|cite|improve this answer











        $endgroup$



        $|x^2-[x]|=x^2-[x]=1because x^2ge[x]forall xinBbb R$



        $[x]=x-{x}$, where ${cdot}$ denotes the fractional part of $x$



        $implies x^2-x+{x}-1=0$



        $impliesdisplaystyle x=frac{1pmsqrt{5-4{x}}}{2}$



        Now, $0le{x}<1implies1<5-4{x}le5implies xinbig(1,frac{1+sqrt5}2big]cupbig[frac{1-sqrt5}2,0big)$



        In $big[frac{1-sqrt5}2,0big)$, $[x]=-1implies x^2=[x]+1=0implies x=0notinbig[frac{1-sqrt5}2,0big)$



        In $big(1,frac{1+sqrt5}2big],[x]=1implies x^2=2implies x=sqrt2$



        The final answer is $x=sqrt2$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 24 '18 at 11:38

























        answered Dec 24 '18 at 10:55









        Shubham JohriShubham Johri

        5,172717




        5,172717























            0












            $begingroup$

            Here is how I solved it:





            Consider x in (k, k+1]
            x = k+r
            |x²-ceil(x)| = |(k+r)²-(k+1)| = 1



            Case1: (k+r)²-(k+1) >= 0
            |(k+r)²-(k+1)| = (k+r)²-k-1 = 1
            (k²+2kr+r²)-k = 2
            1r² +2kr +k²-k-2 = 0
            r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
            = -k +/- sqrt(k²-(k²-k-2))
            = -k +/- sqrt(k²-k²+k+2)
            = -k +/- sqrt(k+2)
            = {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
            For real roots, k must be in {-2, -1, ...}
            r must be within (0, 1]
            0 < r1:
            -k + sqrt(k+2) > 0
            sqrt(k+2) > k
            true for k <= 0, consider k > 0
            k+2 > k²
            1k² - 1k - 2 < 0
            (1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
            k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
            0 < k < 2
            k = 1
            k in {-2, -1, 0, 1}
            r1 <= 1:
            -k + sqrt(k+2) <= 1
            sqrt(k+2) <= 1+k
            false for k < -1
            k+2 <= (1+k)² = k²+2k+1
            0 <= k² + k - 1
            0 <= (-1)² + (-1) - 1 = -1, false
            0 <= (0)² + (0) - 1 = -1, false
            0 <= (1)² + (1) - 1 = 1, true
            k = 1
            r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
            root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
            0 < r2:
            -k - sqrt(k+2) > 0
            k < -sqrt(k+2), false for k >= 0
            -1 < -sqrt(-1+2), 1 > sqrt(1), false
            -2 < -sqrt(-2+2), 2 > sqrt(0), true
            k = -2
            r2 <= 1:
            r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false



            Case2: (k+r)²-(k+1) < 0
            |(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
            -(k²+2kr+r²)+k = 0
            k²+2kr+r²-k = 0
            1r² + 2kr + k²-k = 0
            r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
            = -k +/- sqrt(k² - (k²-k))
            = -k +/- sqrt(k)
            = {-k - sqrt(k), -k + sqrt(k)}
            For real roots, k must be in {0, 1, ...}
            r must be within (0, 1]
            0 < r1 = -k - sqrt(k) is false for those k
            0 < r2:
            0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
            No root candidates for Case2



            The only root found is sqrt(3) when Case1 pertains, a simple test shows that
            this is indeed the root:
            |sqrt(3)²-ceil(sqrt(3))| = 1
            |3-2| = 1
            1 = 1








            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Please use mathjax to format answers. This is particularly important for answerers to do.
              $endgroup$
              – amWhy
              Dec 24 '18 at 12:35
















            0












            $begingroup$

            Here is how I solved it:





            Consider x in (k, k+1]
            x = k+r
            |x²-ceil(x)| = |(k+r)²-(k+1)| = 1



            Case1: (k+r)²-(k+1) >= 0
            |(k+r)²-(k+1)| = (k+r)²-k-1 = 1
            (k²+2kr+r²)-k = 2
            1r² +2kr +k²-k-2 = 0
            r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
            = -k +/- sqrt(k²-(k²-k-2))
            = -k +/- sqrt(k²-k²+k+2)
            = -k +/- sqrt(k+2)
            = {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
            For real roots, k must be in {-2, -1, ...}
            r must be within (0, 1]
            0 < r1:
            -k + sqrt(k+2) > 0
            sqrt(k+2) > k
            true for k <= 0, consider k > 0
            k+2 > k²
            1k² - 1k - 2 < 0
            (1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
            k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
            0 < k < 2
            k = 1
            k in {-2, -1, 0, 1}
            r1 <= 1:
            -k + sqrt(k+2) <= 1
            sqrt(k+2) <= 1+k
            false for k < -1
            k+2 <= (1+k)² = k²+2k+1
            0 <= k² + k - 1
            0 <= (-1)² + (-1) - 1 = -1, false
            0 <= (0)² + (0) - 1 = -1, false
            0 <= (1)² + (1) - 1 = 1, true
            k = 1
            r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
            root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
            0 < r2:
            -k - sqrt(k+2) > 0
            k < -sqrt(k+2), false for k >= 0
            -1 < -sqrt(-1+2), 1 > sqrt(1), false
            -2 < -sqrt(-2+2), 2 > sqrt(0), true
            k = -2
            r2 <= 1:
            r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false



            Case2: (k+r)²-(k+1) < 0
            |(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
            -(k²+2kr+r²)+k = 0
            k²+2kr+r²-k = 0
            1r² + 2kr + k²-k = 0
            r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
            = -k +/- sqrt(k² - (k²-k))
            = -k +/- sqrt(k)
            = {-k - sqrt(k), -k + sqrt(k)}
            For real roots, k must be in {0, 1, ...}
            r must be within (0, 1]
            0 < r1 = -k - sqrt(k) is false for those k
            0 < r2:
            0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
            No root candidates for Case2



            The only root found is sqrt(3) when Case1 pertains, a simple test shows that
            this is indeed the root:
            |sqrt(3)²-ceil(sqrt(3))| = 1
            |3-2| = 1
            1 = 1








            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Please use mathjax to format answers. This is particularly important for answerers to do.
              $endgroup$
              – amWhy
              Dec 24 '18 at 12:35














            0












            0








            0





            $begingroup$

            Here is how I solved it:





            Consider x in (k, k+1]
            x = k+r
            |x²-ceil(x)| = |(k+r)²-(k+1)| = 1



            Case1: (k+r)²-(k+1) >= 0
            |(k+r)²-(k+1)| = (k+r)²-k-1 = 1
            (k²+2kr+r²)-k = 2
            1r² +2kr +k²-k-2 = 0
            r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
            = -k +/- sqrt(k²-(k²-k-2))
            = -k +/- sqrt(k²-k²+k+2)
            = -k +/- sqrt(k+2)
            = {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
            For real roots, k must be in {-2, -1, ...}
            r must be within (0, 1]
            0 < r1:
            -k + sqrt(k+2) > 0
            sqrt(k+2) > k
            true for k <= 0, consider k > 0
            k+2 > k²
            1k² - 1k - 2 < 0
            (1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
            k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
            0 < k < 2
            k = 1
            k in {-2, -1, 0, 1}
            r1 <= 1:
            -k + sqrt(k+2) <= 1
            sqrt(k+2) <= 1+k
            false for k < -1
            k+2 <= (1+k)² = k²+2k+1
            0 <= k² + k - 1
            0 <= (-1)² + (-1) - 1 = -1, false
            0 <= (0)² + (0) - 1 = -1, false
            0 <= (1)² + (1) - 1 = 1, true
            k = 1
            r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
            root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
            0 < r2:
            -k - sqrt(k+2) > 0
            k < -sqrt(k+2), false for k >= 0
            -1 < -sqrt(-1+2), 1 > sqrt(1), false
            -2 < -sqrt(-2+2), 2 > sqrt(0), true
            k = -2
            r2 <= 1:
            r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false



            Case2: (k+r)²-(k+1) < 0
            |(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
            -(k²+2kr+r²)+k = 0
            k²+2kr+r²-k = 0
            1r² + 2kr + k²-k = 0
            r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
            = -k +/- sqrt(k² - (k²-k))
            = -k +/- sqrt(k)
            = {-k - sqrt(k), -k + sqrt(k)}
            For real roots, k must be in {0, 1, ...}
            r must be within (0, 1]
            0 < r1 = -k - sqrt(k) is false for those k
            0 < r2:
            0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
            No root candidates for Case2



            The only root found is sqrt(3) when Case1 pertains, a simple test shows that
            this is indeed the root:
            |sqrt(3)²-ceil(sqrt(3))| = 1
            |3-2| = 1
            1 = 1








            share|cite|improve this answer









            $endgroup$



            Here is how I solved it:





            Consider x in (k, k+1]
            x = k+r
            |x²-ceil(x)| = |(k+r)²-(k+1)| = 1



            Case1: (k+r)²-(k+1) >= 0
            |(k+r)²-(k+1)| = (k+r)²-k-1 = 1
            (k²+2kr+r²)-k = 2
            1r² +2kr +k²-k-2 = 0
            r in (-2k +/- sqrt(4k²-4(k²-k-2))) / 2
            = -k +/- sqrt(k²-(k²-k-2))
            = -k +/- sqrt(k²-k²+k+2)
            = -k +/- sqrt(k+2)
            = {-k + sqrt(k+2), -k - sqrt(k+2)} = {r1, r2}
            For real roots, k must be in {-2, -1, ...}
            r must be within (0, 1]
            0 < r1:
            -k + sqrt(k+2) > 0
            sqrt(k+2) > k
            true for k <= 0, consider k > 0
            k+2 > k²
            1k² - 1k - 2 < 0
            (1 +/- sqrt(1 - 4*(-2))) / 2 = (1 +/- 3) / 2 = {-1, 2}
            k > 0 and 1k² - 1k - 2 < 0 is false for k → inf
            0 < k < 2
            k = 1
            k in {-2, -1, 0, 1}
            r1 <= 1:
            -k + sqrt(k+2) <= 1
            sqrt(k+2) <= 1+k
            false for k < -1
            k+2 <= (1+k)² = k²+2k+1
            0 <= k² + k - 1
            0 <= (-1)² + (-1) - 1 = -1, false
            0 <= (0)² + (0) - 1 = -1, false
            0 <= (1)² + (1) - 1 = 1, true
            k = 1
            r1 = -k + sqrt(k+2) = -1 + sqrt(1+2) = sqrt(3) - 1
            root candidate: 1 + r1 = 1 + sqrt(3) - 1 = sqrt(3)
            0 < r2:
            -k - sqrt(k+2) > 0
            k < -sqrt(k+2), false for k >= 0
            -1 < -sqrt(-1+2), 1 > sqrt(1), false
            -2 < -sqrt(-2+2), 2 > sqrt(0), true
            k = -2
            r2 <= 1:
            r2 = -k - sqrt(k+2) = 2 - sqrt(-2+2) = 2, false



            Case2: (k+r)²-(k+1) < 0
            |(k+r)²-(k+1)| = -(k+r)²+k+1 = 1
            -(k²+2kr+r²)+k = 0
            k²+2kr+r²-k = 0
            1r² + 2kr + k²-k = 0
            r in (-2k +/- sqrt(4k² - 4(k²-k))) / 2
            = -k +/- sqrt(k² - (k²-k))
            = -k +/- sqrt(k)
            = {-k - sqrt(k), -k + sqrt(k)}
            For real roots, k must be in {0, 1, ...}
            r must be within (0, 1]
            0 < r1 = -k - sqrt(k) is false for those k
            0 < r2:
            0 < -k + sqrt(k), k < sqrt(k), k² < k, k < 0, false
            No root candidates for Case2



            The only root found is sqrt(3) when Case1 pertains, a simple test shows that
            this is indeed the root:
            |sqrt(3)²-ceil(sqrt(3))| = 1
            |3-2| = 1
            1 = 1









            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 24 '18 at 12:27









            guest421guest421

            1




            1












            • $begingroup$
              Please use mathjax to format answers. This is particularly important for answerers to do.
              $endgroup$
              – amWhy
              Dec 24 '18 at 12:35


















            • $begingroup$
              Please use mathjax to format answers. This is particularly important for answerers to do.
              $endgroup$
              – amWhy
              Dec 24 '18 at 12:35
















            $begingroup$
            Please use mathjax to format answers. This is particularly important for answerers to do.
            $endgroup$
            – amWhy
            Dec 24 '18 at 12:35




            $begingroup$
            Please use mathjax to format answers. This is particularly important for answerers to do.
            $endgroup$
            – amWhy
            Dec 24 '18 at 12:35


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3051124%2ffinding-roots-with-mod-and-greatest-integer%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna