Natural logs with L'Hopital's rule
Given $$lim_{xto 0} (e^x-2x)^frac{1}{x} $$ I know that you take the natural log $$lim_{xto 0} frac{1}{x}ln(e^x-2x) $$ which is $$lim_{xto 0} frac{ln(e^x-2x)}{x} $$ but what is after this?
calculus limits
add a comment |
Given $$lim_{xto 0} (e^x-2x)^frac{1}{x} $$ I know that you take the natural log $$lim_{xto 0} frac{1}{x}ln(e^x-2x) $$ which is $$lim_{xto 0} frac{ln(e^x-2x)}{x} $$ but what is after this?
calculus limits
You have just taken the natural log. Now, Hopital rule requires that you differentiate numerator and denominator...
– the_candyman
Dec 9 at 18:52
add a comment |
Given $$lim_{xto 0} (e^x-2x)^frac{1}{x} $$ I know that you take the natural log $$lim_{xto 0} frac{1}{x}ln(e^x-2x) $$ which is $$lim_{xto 0} frac{ln(e^x-2x)}{x} $$ but what is after this?
calculus limits
Given $$lim_{xto 0} (e^x-2x)^frac{1}{x} $$ I know that you take the natural log $$lim_{xto 0} frac{1}{x}ln(e^x-2x) $$ which is $$lim_{xto 0} frac{ln(e^x-2x)}{x} $$ but what is after this?
calculus limits
calculus limits
edited Dec 9 at 19:01
gimusi
1
1
asked Dec 9 at 18:47
ovil101
273
273
You have just taken the natural log. Now, Hopital rule requires that you differentiate numerator and denominator...
– the_candyman
Dec 9 at 18:52
add a comment |
You have just taken the natural log. Now, Hopital rule requires that you differentiate numerator and denominator...
– the_candyman
Dec 9 at 18:52
You have just taken the natural log. Now, Hopital rule requires that you differentiate numerator and denominator...
– the_candyman
Dec 9 at 18:52
You have just taken the natural log. Now, Hopital rule requires that you differentiate numerator and denominator...
– the_candyman
Dec 9 at 18:52
add a comment |
4 Answers
4
active
oldest
votes
Now since the limit is of $0/0$ form we can apply L'Hopital's rule. So differentiate numerator and denominator, we get
$lim_{x to 0}(e^x-2)/(e^x-2x)=-1$.
Now the real limit comes out to be $e^{-1}$.
I need to take a break my God
– ovil101
Dec 9 at 19:00
Don't worry it happens. :)
– Jimmy
Dec 9 at 19:01
add a comment |
$$lim_{xto 0} (e^x-2x)^{1/x}neq lim_{xto 0} frac{1}{x}ln(e^x-2x)$$
$$lim_{xto 0} (e^x-2x)^{1/x}=lim_{xto 0} e^{ln{(e^x-2x)}/x}=$$
$$=expleft(lim_{xto 0}frac{ln (e^x-2x)}xright)$$
Now we can apply L'Hospital Rule, which means differentiating both numerator and denominator
$$expleft(lim_{xto 0}frac{e^x-2}{e^x-2x}right)=e^{-1}=frac1e$$
add a comment |
For the form of limit 1^(infinity),
lim f(x)^g(x) = e^ lim [{f(x) - 1}•g(x)]
Using Maclaurin expansion, you will get e^(-x/x) which is e^-1
e^x = 1 + x/1! + (x^2)/2! + (x^3)/3! ...
add a comment |
HINT
We have that only by standard limits
$$lim_{xto 0} (e^x-2x)^frac{1}{x}=lim_{xto 0} eleft(1-frac{2x}{e^x}right)^frac{1}{x}$$
and by $y=frac1x to infty$
$$left(1-frac{2x}{e^x}right)^frac{1}{x}=left(1-frac{2}{ye^{1/y}}right)^y=left[left(1-frac{2}{ye^{1/y}}right)^{frac{ye^{1/y}}2}right]^{frac{2}{e^{1/y}}}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032781%2fnatural-logs-with-lhopitals-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Now since the limit is of $0/0$ form we can apply L'Hopital's rule. So differentiate numerator and denominator, we get
$lim_{x to 0}(e^x-2)/(e^x-2x)=-1$.
Now the real limit comes out to be $e^{-1}$.
I need to take a break my God
– ovil101
Dec 9 at 19:00
Don't worry it happens. :)
– Jimmy
Dec 9 at 19:01
add a comment |
Now since the limit is of $0/0$ form we can apply L'Hopital's rule. So differentiate numerator and denominator, we get
$lim_{x to 0}(e^x-2)/(e^x-2x)=-1$.
Now the real limit comes out to be $e^{-1}$.
I need to take a break my God
– ovil101
Dec 9 at 19:00
Don't worry it happens. :)
– Jimmy
Dec 9 at 19:01
add a comment |
Now since the limit is of $0/0$ form we can apply L'Hopital's rule. So differentiate numerator and denominator, we get
$lim_{x to 0}(e^x-2)/(e^x-2x)=-1$.
Now the real limit comes out to be $e^{-1}$.
Now since the limit is of $0/0$ form we can apply L'Hopital's rule. So differentiate numerator and denominator, we get
$lim_{x to 0}(e^x-2)/(e^x-2x)=-1$.
Now the real limit comes out to be $e^{-1}$.
answered Dec 9 at 18:51
Jimmy
17212
17212
I need to take a break my God
– ovil101
Dec 9 at 19:00
Don't worry it happens. :)
– Jimmy
Dec 9 at 19:01
add a comment |
I need to take a break my God
– ovil101
Dec 9 at 19:00
Don't worry it happens. :)
– Jimmy
Dec 9 at 19:01
I need to take a break my God
– ovil101
Dec 9 at 19:00
I need to take a break my God
– ovil101
Dec 9 at 19:00
Don't worry it happens. :)
– Jimmy
Dec 9 at 19:01
Don't worry it happens. :)
– Jimmy
Dec 9 at 19:01
add a comment |
$$lim_{xto 0} (e^x-2x)^{1/x}neq lim_{xto 0} frac{1}{x}ln(e^x-2x)$$
$$lim_{xto 0} (e^x-2x)^{1/x}=lim_{xto 0} e^{ln{(e^x-2x)}/x}=$$
$$=expleft(lim_{xto 0}frac{ln (e^x-2x)}xright)$$
Now we can apply L'Hospital Rule, which means differentiating both numerator and denominator
$$expleft(lim_{xto 0}frac{e^x-2}{e^x-2x}right)=e^{-1}=frac1e$$
add a comment |
$$lim_{xto 0} (e^x-2x)^{1/x}neq lim_{xto 0} frac{1}{x}ln(e^x-2x)$$
$$lim_{xto 0} (e^x-2x)^{1/x}=lim_{xto 0} e^{ln{(e^x-2x)}/x}=$$
$$=expleft(lim_{xto 0}frac{ln (e^x-2x)}xright)$$
Now we can apply L'Hospital Rule, which means differentiating both numerator and denominator
$$expleft(lim_{xto 0}frac{e^x-2}{e^x-2x}right)=e^{-1}=frac1e$$
add a comment |
$$lim_{xto 0} (e^x-2x)^{1/x}neq lim_{xto 0} frac{1}{x}ln(e^x-2x)$$
$$lim_{xto 0} (e^x-2x)^{1/x}=lim_{xto 0} e^{ln{(e^x-2x)}/x}=$$
$$=expleft(lim_{xto 0}frac{ln (e^x-2x)}xright)$$
Now we can apply L'Hospital Rule, which means differentiating both numerator and denominator
$$expleft(lim_{xto 0}frac{e^x-2}{e^x-2x}right)=e^{-1}=frac1e$$
$$lim_{xto 0} (e^x-2x)^{1/x}neq lim_{xto 0} frac{1}{x}ln(e^x-2x)$$
$$lim_{xto 0} (e^x-2x)^{1/x}=lim_{xto 0} e^{ln{(e^x-2x)}/x}=$$
$$=expleft(lim_{xto 0}frac{ln (e^x-2x)}xright)$$
Now we can apply L'Hospital Rule, which means differentiating both numerator and denominator
$$expleft(lim_{xto 0}frac{e^x-2}{e^x-2x}right)=e^{-1}=frac1e$$
answered Dec 9 at 19:01
Lorenzo B.
1,8322520
1,8322520
add a comment |
add a comment |
For the form of limit 1^(infinity),
lim f(x)^g(x) = e^ lim [{f(x) - 1}•g(x)]
Using Maclaurin expansion, you will get e^(-x/x) which is e^-1
e^x = 1 + x/1! + (x^2)/2! + (x^3)/3! ...
add a comment |
For the form of limit 1^(infinity),
lim f(x)^g(x) = e^ lim [{f(x) - 1}•g(x)]
Using Maclaurin expansion, you will get e^(-x/x) which is e^-1
e^x = 1 + x/1! + (x^2)/2! + (x^3)/3! ...
add a comment |
For the form of limit 1^(infinity),
lim f(x)^g(x) = e^ lim [{f(x) - 1}•g(x)]
Using Maclaurin expansion, you will get e^(-x/x) which is e^-1
e^x = 1 + x/1! + (x^2)/2! + (x^3)/3! ...
For the form of limit 1^(infinity),
lim f(x)^g(x) = e^ lim [{f(x) - 1}•g(x)]
Using Maclaurin expansion, you will get e^(-x/x) which is e^-1
e^x = 1 + x/1! + (x^2)/2! + (x^3)/3! ...
answered Dec 9 at 19:16
Debjit Kar
61
61
add a comment |
add a comment |
HINT
We have that only by standard limits
$$lim_{xto 0} (e^x-2x)^frac{1}{x}=lim_{xto 0} eleft(1-frac{2x}{e^x}right)^frac{1}{x}$$
and by $y=frac1x to infty$
$$left(1-frac{2x}{e^x}right)^frac{1}{x}=left(1-frac{2}{ye^{1/y}}right)^y=left[left(1-frac{2}{ye^{1/y}}right)^{frac{ye^{1/y}}2}right]^{frac{2}{e^{1/y}}}$$
add a comment |
HINT
We have that only by standard limits
$$lim_{xto 0} (e^x-2x)^frac{1}{x}=lim_{xto 0} eleft(1-frac{2x}{e^x}right)^frac{1}{x}$$
and by $y=frac1x to infty$
$$left(1-frac{2x}{e^x}right)^frac{1}{x}=left(1-frac{2}{ye^{1/y}}right)^y=left[left(1-frac{2}{ye^{1/y}}right)^{frac{ye^{1/y}}2}right]^{frac{2}{e^{1/y}}}$$
add a comment |
HINT
We have that only by standard limits
$$lim_{xto 0} (e^x-2x)^frac{1}{x}=lim_{xto 0} eleft(1-frac{2x}{e^x}right)^frac{1}{x}$$
and by $y=frac1x to infty$
$$left(1-frac{2x}{e^x}right)^frac{1}{x}=left(1-frac{2}{ye^{1/y}}right)^y=left[left(1-frac{2}{ye^{1/y}}right)^{frac{ye^{1/y}}2}right]^{frac{2}{e^{1/y}}}$$
HINT
We have that only by standard limits
$$lim_{xto 0} (e^x-2x)^frac{1}{x}=lim_{xto 0} eleft(1-frac{2x}{e^x}right)^frac{1}{x}$$
and by $y=frac1x to infty$
$$left(1-frac{2x}{e^x}right)^frac{1}{x}=left(1-frac{2}{ye^{1/y}}right)^y=left[left(1-frac{2}{ye^{1/y}}right)^{frac{ye^{1/y}}2}right]^{frac{2}{e^{1/y}}}$$
answered Dec 9 at 19:01
gimusi
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032781%2fnatural-logs-with-lhopitals-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You have just taken the natural log. Now, Hopital rule requires that you differentiate numerator and denominator...
– the_candyman
Dec 9 at 18:52