If $mathfrak{g}=bigoplusmathfrak{g}_i$ is a semisimple Lie algebra, why does...












4












$begingroup$


There is this property about Cartan subalgebras that is not clear to me.



Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.



Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.










share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    There is this property about Cartan subalgebras that is not clear to me.



    Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.



    Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.










    share|cite|improve this question











    $endgroup$















      4












      4








      4


      1



      $begingroup$


      There is this property about Cartan subalgebras that is not clear to me.



      Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.



      Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.










      share|cite|improve this question











      $endgroup$




      There is this property about Cartan subalgebras that is not clear to me.



      Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.



      Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.







      abstract-algebra representation-theory lie-algebras direct-sum nonassociative-algebras






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 3 at 1:48









      Batominovski

      33.1k33293




      33.1k33293










      asked Jul 11 '15 at 9:17









      Geovanna AnthonyGeovanna Anthony

      24929




      24929






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.



          Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.



          To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1357270%2fif-mathfrakg-bigoplus-mathfrakg-i-is-a-semisimple-lie-algebra-why-does%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.



            Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.



            To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.



              Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.



              To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.



                Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.



                To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.






                share|cite|improve this answer











                $endgroup$



                Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.



                Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.



                To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 3 at 1:46

























                answered Jul 11 '15 at 12:25









                BatominovskiBatominovski

                33.1k33293




                33.1k33293






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1357270%2fif-mathfrakg-bigoplus-mathfrakg-i-is-a-semisimple-lie-algebra-why-does%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna