If $mathfrak{g}=bigoplusmathfrak{g}_i$ is a semisimple Lie algebra, why does...
$begingroup$
There is this property about Cartan subalgebras that is not clear to me.
Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.
Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.
abstract-algebra representation-theory lie-algebras direct-sum nonassociative-algebras
$endgroup$
add a comment |
$begingroup$
There is this property about Cartan subalgebras that is not clear to me.
Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.
Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.
abstract-algebra representation-theory lie-algebras direct-sum nonassociative-algebras
$endgroup$
add a comment |
$begingroup$
There is this property about Cartan subalgebras that is not clear to me.
Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.
Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.
abstract-algebra representation-theory lie-algebras direct-sum nonassociative-algebras
$endgroup$
There is this property about Cartan subalgebras that is not clear to me.
Suppose $mathfrak{g}$ is a semisimple Lie algebra. Then I know we can decompose it uniquely as $mathfrak{g}=bigoplusmathfrak{g}_i$, where the $mathfrak{g}_i$ are simple ideals. If $mathfrak{h}$ is a Cartan subalgebra (maximal toral subalgebra), then $mathfrak{h}=bigoplus(mathfrak{h}capmathfrak{g}_i)$. The $supseteq$ direction is clear.
Why does the other follow? I thought of something like this, take $xinmathfrak{h}$, and write $x=sum x_i$ for $x_iinmathfrak{g}_i$. I want to show $x_iinmathfrak{h}$ for each $i$. I did this by induction on the number of nonzero summands. If there is only one summand so $x=x_i$, the claim is clear. If there's more than one summand, I'm not sure how to reduce it to imply the induction, if this is the right idea.
abstract-algebra representation-theory lie-algebras direct-sum nonassociative-algebras
abstract-algebra representation-theory lie-algebras direct-sum nonassociative-algebras
edited Jan 3 at 1:48
Batominovski
33.1k33293
33.1k33293
asked Jul 11 '15 at 9:17
Geovanna AnthonyGeovanna Anthony
24929
24929
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.
Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.
To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1357270%2fif-mathfrakg-bigoplus-mathfrakg-i-is-a-semisimple-lie-algebra-why-does%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.
Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.
To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.
$endgroup$
add a comment |
$begingroup$
Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.
Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.
To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.
$endgroup$
add a comment |
$begingroup$
Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.
Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.
To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.
$endgroup$
Suppose that $K$ is the base field. Fix $hinmathfrak{h}$. Let $h_iinmathfrak{g}_i$ be such that $h=sumlimits_i,h_i$ (the $h_i$'s are unique). We claim that $h_iinmathfrak{h}$ for all $i$. Let $tinmathfrak{h}$. Write $t=sumlimits_{i},t_i$ with $t_iinmathfrak{g}_i$. For $ineq j$, $$left[t_i,h_jright]inmathfrak{g}_icapmathfrak{g}_j={0},,$$ so $left[t_i,h_jright]=0$. Ergo, $$sumlimits_{i},left[t_i,h_iright]=[t,h]=0,.$$ Since $left[t_i,h_iright]inmathfrak{g}_i$, we conclude that $left[t_i,h_iright]=0$ for every $i$. Thus, $left[h_i,tright]=left[h_i,t_iright]=0$ for every $tinmathfrak{h}$.
Because $h$ is a semisimple element of $mathfrak{g}$, $h_i$ is also a semisimple element of $mathfrak{g}$ (to be proven below). If $h_inotinmathfrak{h}$, then $mathfrak{h}oplus Kmathfrak{h}_i$ is a strictly larger toral subalgebra containing $h$, which is a contradiction. Thus, $h_iin mathfrak{h}$ for all $i$, so $h_iinmathfrak{h}capmathfrak{g}_i$. Therefore, $$h=sumlimits_i,h_iinbigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright),,$$ whence $mathfrak{h}subseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$. Since it is trivial that $mathfrak{h}supseteq bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, $mathfrak{h}= bigopluslimits_i,left(mathfrak{h}capmathfrak{g}_iright)$, as required.
To show that $h_i$ is a semisimple element of $mathfrak{g}$, we let $V^lambda$ be the eigenspace of $text{ad}_mathfrak{g}(h)$ with the eigenvalue $lambdain K$. For each $i$, take $V_i^lambda$ to be the intersection $V^lambdacapmathfrak{g}_i$. Trivially, $bigopluslimits_{lambdain K},V^lambda_i=mathfrak{g}_i$. However, as $V^lambda_i$ is the eigenspace with eigenvalue $lambda$ of $text{ad}_{mathfrak{g}_i}left(h_iright)$, we see that $h_i$ is a semisimple element of $mathfrak{g}_i$. Now, define $tilde{V}^lambda_i:=V^lambda_i$ if $lambdaneq 0$, and $tilde{V}^0_i:=V^0_ioplusleft(bigopluslimits_{jneq i},mathfrak{g}_jright)$. Then, $tilde{V}^lambda_i$ is the eigenspace of $text{ad}_mathfrak{g}left(h_iright)$ with eigenvalue $lambda$. Since $bigopluslimits_{lambda in K},tilde{V}^lambda_i=mathfrak{g}$, we conclude that $h_i$ is a semisimple element of $mathfrak{g}$.
edited Jan 3 at 1:46
answered Jul 11 '15 at 12:25
BatominovskiBatominovski
33.1k33293
33.1k33293
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1357270%2fif-mathfrakg-bigoplus-mathfrakg-i-is-a-semisimple-lie-algebra-why-does%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown