Prove $Delta text{ABC}$ is a right triangle?












3














Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:



$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$



I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !










share|cite|improve this question
























  • Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
    – Christian Blatter
    Dec 9 at 11:01






  • 1




    I mean for all $text{k}$ ! Thanks !
    – HaiDangel
    Dec 9 at 12:33
















3














Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:



$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$



I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !










share|cite|improve this question
























  • Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
    – Christian Blatter
    Dec 9 at 11:01






  • 1




    I mean for all $text{k}$ ! Thanks !
    – HaiDangel
    Dec 9 at 12:33














3












3








3


4





Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:



$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$



I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !










share|cite|improve this question















Prove $Delta text{ABC}$ is a right triangle if:
$$left{begin{matrix} sin^{2},text{A}+ sin^{2},text{B}= sin text{C}\ maxleft { measuredangle text{A}- text{k},measuredangle text{B},,measuredangle text{B}- text{k},measuredangle text{A} right }leqq frac{pi }{2}\ left | text{k} right |leqq 3 end{matrix}right.$$
I have a proof for my problem with $text{k}= 0$. See here:



$lceil$ https://diendantoanhoc.net/topic/185093-measuredangle-textc-pi/#entry716757 $rfloor$



I also have another solution but ugly, I try to use similar method with $left | text{k} right |leqq 3$ but without success !







geometry trigonometry inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 9 at 13:19

























asked Dec 9 at 7:19









HaiDangel

213




213












  • Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
    – Christian Blatter
    Dec 9 at 11:01






  • 1




    I mean for all $text{k}$ ! Thanks !
    – HaiDangel
    Dec 9 at 12:33


















  • Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
    – Christian Blatter
    Dec 9 at 11:01






  • 1




    I mean for all $text{k}$ ! Thanks !
    – HaiDangel
    Dec 9 at 12:33
















Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
– Christian Blatter
Dec 9 at 11:01




Do you mean "for all $k$ with $|k|leq3,$" or "for some $k$ with $|k|leq3,$"?
– Christian Blatter
Dec 9 at 11:01




1




1




I mean for all $text{k}$ ! Thanks !
– HaiDangel
Dec 9 at 12:33




I mean for all $text{k}$ ! Thanks !
– HaiDangel
Dec 9 at 12:33










2 Answers
2






active

oldest

votes


















0














One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get



$$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying



$$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
}-{c}^{2} right)
=0$$

it remaines to show that the first factor can not be zero.






share|cite|improve this answer





























    0














    If I read the second condition as
    $$alpha-kbetaleq{piover2},quadbeta-kalphaleq{piover2}qquad forall >kin[-3,3] ,$$
    and add these two inequalities in the case $k:=-3$ I obtain
    $$4(alpha+beta)leq pi ,$$
    or $alpha+betaleq{piover4}$. I don't see how a right triangle can be formed in this way, even without looking at the first condition. Note that in the linked source they are only talking about the case $k=3$.






    share|cite|improve this answer

















    • 1




      $left | text{k} right |leqq 3$ is acceptable ! With $left | text{k} right |leqq 3$, for example: $text{A}= 4,text{B}+ frac{5,pi}{11},,text{C}= frac{6,pi}{11}- 5,text{B},,left | text{k} right |= 4Rightarrow text{B}neq frac{pi}{110} Rightarrow text{C}neq pi$ ! I understand your comment & I think $left | text{k} right |leqq 3$ is neccessary for my problem ! $text{k}= 3$ is my original problem, then I generalised it to $left | text{k} right |leqq 3$ , those are all of mine on Vietnamese Math Forum ( Diendantoanhoc.net ) ! Thanks for your interest !
      – HaiDangel
      Dec 10 at 1:19






    • 1




      There are some misunderstandings about my problem here: $lceil$ artofproblemsolving.com/community/c6h1725878p11175691 $rfloor$
      – HaiDangel
      Dec 10 at 1:29













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032114%2fprove-delta-textabc-is-a-right-triangle%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get



    $$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying



    $$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
    2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
    }-{c}^{2} right)
    =0$$

    it remaines to show that the first factor can not be zero.






    share|cite|improve this answer


























      0














      One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get



      $$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying



      $$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
      2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
      }-{c}^{2} right)
      =0$$

      it remaines to show that the first factor can not be zero.






      share|cite|improve this answer
























        0












        0








        0






        One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get



        $$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying



        $$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
        2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
        }-{c}^{2} right)
        =0$$

        it remaines to show that the first factor can not be zero.






        share|cite|improve this answer












        One idea: Using the formulas $$A=frac{1}{2}absin(gamma)$$ etc we get



        $$frac{4A^2}{b^2c^2}+frac{4A^2}{a^2c^2}=frac{2A}{ab}$$ and using $$A=sqrt{s(s-a)(s-b)(s-c)}$$ where $$s=frac{a+b+c}{2}$$ plugging this in our formula we get after squaring and simplifying



        $$- left( {a}^{6}-{a}^{4}{b}^{2}-{a}^{4}{c}^{2}-{a}^{2}{b}^{4}-6,{a}^{
        2}{b}^{2}{c}^{2}+{b}^{6}-{b}^{4}{c}^{2} right) left( {a}^{2}+{b}^{2
        }-{c}^{2} right)
        =0$$

        it remaines to show that the first factor can not be zero.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 9 at 10:12









        Dr. Sonnhard Graubner

        73k42865




        73k42865























            0














            If I read the second condition as
            $$alpha-kbetaleq{piover2},quadbeta-kalphaleq{piover2}qquad forall >kin[-3,3] ,$$
            and add these two inequalities in the case $k:=-3$ I obtain
            $$4(alpha+beta)leq pi ,$$
            or $alpha+betaleq{piover4}$. I don't see how a right triangle can be formed in this way, even without looking at the first condition. Note that in the linked source they are only talking about the case $k=3$.






            share|cite|improve this answer

















            • 1




              $left | text{k} right |leqq 3$ is acceptable ! With $left | text{k} right |leqq 3$, for example: $text{A}= 4,text{B}+ frac{5,pi}{11},,text{C}= frac{6,pi}{11}- 5,text{B},,left | text{k} right |= 4Rightarrow text{B}neq frac{pi}{110} Rightarrow text{C}neq pi$ ! I understand your comment & I think $left | text{k} right |leqq 3$ is neccessary for my problem ! $text{k}= 3$ is my original problem, then I generalised it to $left | text{k} right |leqq 3$ , those are all of mine on Vietnamese Math Forum ( Diendantoanhoc.net ) ! Thanks for your interest !
              – HaiDangel
              Dec 10 at 1:19






            • 1




              There are some misunderstandings about my problem here: $lceil$ artofproblemsolving.com/community/c6h1725878p11175691 $rfloor$
              – HaiDangel
              Dec 10 at 1:29


















            0














            If I read the second condition as
            $$alpha-kbetaleq{piover2},quadbeta-kalphaleq{piover2}qquad forall >kin[-3,3] ,$$
            and add these two inequalities in the case $k:=-3$ I obtain
            $$4(alpha+beta)leq pi ,$$
            or $alpha+betaleq{piover4}$. I don't see how a right triangle can be formed in this way, even without looking at the first condition. Note that in the linked source they are only talking about the case $k=3$.






            share|cite|improve this answer

















            • 1




              $left | text{k} right |leqq 3$ is acceptable ! With $left | text{k} right |leqq 3$, for example: $text{A}= 4,text{B}+ frac{5,pi}{11},,text{C}= frac{6,pi}{11}- 5,text{B},,left | text{k} right |= 4Rightarrow text{B}neq frac{pi}{110} Rightarrow text{C}neq pi$ ! I understand your comment & I think $left | text{k} right |leqq 3$ is neccessary for my problem ! $text{k}= 3$ is my original problem, then I generalised it to $left | text{k} right |leqq 3$ , those are all of mine on Vietnamese Math Forum ( Diendantoanhoc.net ) ! Thanks for your interest !
              – HaiDangel
              Dec 10 at 1:19






            • 1




              There are some misunderstandings about my problem here: $lceil$ artofproblemsolving.com/community/c6h1725878p11175691 $rfloor$
              – HaiDangel
              Dec 10 at 1:29
















            0












            0








            0






            If I read the second condition as
            $$alpha-kbetaleq{piover2},quadbeta-kalphaleq{piover2}qquad forall >kin[-3,3] ,$$
            and add these two inequalities in the case $k:=-3$ I obtain
            $$4(alpha+beta)leq pi ,$$
            or $alpha+betaleq{piover4}$. I don't see how a right triangle can be formed in this way, even without looking at the first condition. Note that in the linked source they are only talking about the case $k=3$.






            share|cite|improve this answer












            If I read the second condition as
            $$alpha-kbetaleq{piover2},quadbeta-kalphaleq{piover2}qquad forall >kin[-3,3] ,$$
            and add these two inequalities in the case $k:=-3$ I obtain
            $$4(alpha+beta)leq pi ,$$
            or $alpha+betaleq{piover4}$. I don't see how a right triangle can be formed in this way, even without looking at the first condition. Note that in the linked source they are only talking about the case $k=3$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 9 at 12:00









            Christian Blatter

            172k7112325




            172k7112325








            • 1




              $left | text{k} right |leqq 3$ is acceptable ! With $left | text{k} right |leqq 3$, for example: $text{A}= 4,text{B}+ frac{5,pi}{11},,text{C}= frac{6,pi}{11}- 5,text{B},,left | text{k} right |= 4Rightarrow text{B}neq frac{pi}{110} Rightarrow text{C}neq pi$ ! I understand your comment & I think $left | text{k} right |leqq 3$ is neccessary for my problem ! $text{k}= 3$ is my original problem, then I generalised it to $left | text{k} right |leqq 3$ , those are all of mine on Vietnamese Math Forum ( Diendantoanhoc.net ) ! Thanks for your interest !
              – HaiDangel
              Dec 10 at 1:19






            • 1




              There are some misunderstandings about my problem here: $lceil$ artofproblemsolving.com/community/c6h1725878p11175691 $rfloor$
              – HaiDangel
              Dec 10 at 1:29
















            • 1




              $left | text{k} right |leqq 3$ is acceptable ! With $left | text{k} right |leqq 3$, for example: $text{A}= 4,text{B}+ frac{5,pi}{11},,text{C}= frac{6,pi}{11}- 5,text{B},,left | text{k} right |= 4Rightarrow text{B}neq frac{pi}{110} Rightarrow text{C}neq pi$ ! I understand your comment & I think $left | text{k} right |leqq 3$ is neccessary for my problem ! $text{k}= 3$ is my original problem, then I generalised it to $left | text{k} right |leqq 3$ , those are all of mine on Vietnamese Math Forum ( Diendantoanhoc.net ) ! Thanks for your interest !
              – HaiDangel
              Dec 10 at 1:19






            • 1




              There are some misunderstandings about my problem here: $lceil$ artofproblemsolving.com/community/c6h1725878p11175691 $rfloor$
              – HaiDangel
              Dec 10 at 1:29










            1




            1




            $left | text{k} right |leqq 3$ is acceptable ! With $left | text{k} right |leqq 3$, for example: $text{A}= 4,text{B}+ frac{5,pi}{11},,text{C}= frac{6,pi}{11}- 5,text{B},,left | text{k} right |= 4Rightarrow text{B}neq frac{pi}{110} Rightarrow text{C}neq pi$ ! I understand your comment & I think $left | text{k} right |leqq 3$ is neccessary for my problem ! $text{k}= 3$ is my original problem, then I generalised it to $left | text{k} right |leqq 3$ , those are all of mine on Vietnamese Math Forum ( Diendantoanhoc.net ) ! Thanks for your interest !
            – HaiDangel
            Dec 10 at 1:19




            $left | text{k} right |leqq 3$ is acceptable ! With $left | text{k} right |leqq 3$, for example: $text{A}= 4,text{B}+ frac{5,pi}{11},,text{C}= frac{6,pi}{11}- 5,text{B},,left | text{k} right |= 4Rightarrow text{B}neq frac{pi}{110} Rightarrow text{C}neq pi$ ! I understand your comment & I think $left | text{k} right |leqq 3$ is neccessary for my problem ! $text{k}= 3$ is my original problem, then I generalised it to $left | text{k} right |leqq 3$ , those are all of mine on Vietnamese Math Forum ( Diendantoanhoc.net ) ! Thanks for your interest !
            – HaiDangel
            Dec 10 at 1:19




            1




            1




            There are some misunderstandings about my problem here: $lceil$ artofproblemsolving.com/community/c6h1725878p11175691 $rfloor$
            – HaiDangel
            Dec 10 at 1:29






            There are some misunderstandings about my problem here: $lceil$ artofproblemsolving.com/community/c6h1725878p11175691 $rfloor$
            – HaiDangel
            Dec 10 at 1:29




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032114%2fprove-delta-textabc-is-a-right-triangle%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna