Calculate the area of trapezoid.
$begingroup$
In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.
Let $angle BAD=theta,$
$BD=h$,
$angle ABD=90^circ$
$angle CBD=90^circ-theta$
$CD=2$because trapezoid is isosceles
Apply cosine law in triangle BDC,
$cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$
$sintheta=frac{h}{4}..(1)$
In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$
From $(1)$ and $(2)$,$h=2sqrt3$
Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$
But the answer given is $2sqrt2(sqrt{5}+1)$
geometry
$endgroup$
add a comment |
$begingroup$
In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.
Let $angle BAD=theta,$
$BD=h$,
$angle ABD=90^circ$
$angle CBD=90^circ-theta$
$CD=2$because trapezoid is isosceles
Apply cosine law in triangle BDC,
$cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$
$sintheta=frac{h}{4}..(1)$
In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$
From $(1)$ and $(2)$,$h=2sqrt3$
Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$
But the answer given is $2sqrt2(sqrt{5}+1)$
geometry
$endgroup$
add a comment |
$begingroup$
In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.
Let $angle BAD=theta,$
$BD=h$,
$angle ABD=90^circ$
$angle CBD=90^circ-theta$
$CD=2$because trapezoid is isosceles
Apply cosine law in triangle BDC,
$cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$
$sintheta=frac{h}{4}..(1)$
In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$
From $(1)$ and $(2)$,$h=2sqrt3$
Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$
But the answer given is $2sqrt2(sqrt{5}+1)$
geometry
$endgroup$
In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.
Let $angle BAD=theta,$
$BD=h$,
$angle ABD=90^circ$
$angle CBD=90^circ-theta$
$CD=2$because trapezoid is isosceles
Apply cosine law in triangle BDC,
$cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$
$sintheta=frac{h}{4}..(1)$
In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$
From $(1)$ and $(2)$,$h=2sqrt3$
Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$
But the answer given is $2sqrt2(sqrt{5}+1)$
geometry
geometry
asked Dec 18 '18 at 14:46
user984325user984325
246112
246112
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$
$endgroup$
add a comment |
$begingroup$
you are correct. The answer should be $3sqrt{3}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045246%2fcalculate-the-area-of-trapezoid%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$
$endgroup$
add a comment |
$begingroup$
I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$
$endgroup$
add a comment |
$begingroup$
I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$
$endgroup$
I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$
answered Dec 18 '18 at 15:15
AndreiAndrei
11.7k21026
11.7k21026
add a comment |
add a comment |
$begingroup$
you are correct. The answer should be $3sqrt{3}$
$endgroup$
add a comment |
$begingroup$
you are correct. The answer should be $3sqrt{3}$
$endgroup$
add a comment |
$begingroup$
you are correct. The answer should be $3sqrt{3}$
$endgroup$
you are correct. The answer should be $3sqrt{3}$
answered Dec 18 '18 at 14:51
william122william122
52412
52412
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045246%2fcalculate-the-area-of-trapezoid%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown