Calculate the area of trapezoid.












1












$begingroup$


In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.





Let $angle BAD=theta,$
$BD=h$,
$angle ABD=90^circ$
$angle CBD=90^circ-theta$
$CD=2$because trapezoid is isosceles


Apply cosine law in triangle BDC,

$cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$

$sintheta=frac{h}{4}..(1)$


In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$

From $(1)$ and $(2)$,$h=2sqrt3$


Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$

But the answer given is $2sqrt2(sqrt{5}+1)$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.





    Let $angle BAD=theta,$
    $BD=h$,
    $angle ABD=90^circ$
    $angle CBD=90^circ-theta$
    $CD=2$because trapezoid is isosceles


    Apply cosine law in triangle BDC,

    $cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$

    $sintheta=frac{h}{4}..(1)$


    In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$

    From $(1)$ and $(2)$,$h=2sqrt3$


    Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$

    But the answer given is $2sqrt2(sqrt{5}+1)$










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.





      Let $angle BAD=theta,$
      $BD=h$,
      $angle ABD=90^circ$
      $angle CBD=90^circ-theta$
      $CD=2$because trapezoid is isosceles


      Apply cosine law in triangle BDC,

      $cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$

      $sintheta=frac{h}{4}..(1)$


      In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$

      From $(1)$ and $(2)$,$h=2sqrt3$


      Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$

      But the answer given is $2sqrt2(sqrt{5}+1)$










      share|cite|improve this question









      $endgroup$




      In an isosceles trapezoid $ABCD$ the leg $AB$ and the smaller base $BC$ are 2 cm long, and $BD$ is perpendicular to $AB$.Calculate the area of trapezoid.





      Let $angle BAD=theta,$
      $BD=h$,
      $angle ABD=90^circ$
      $angle CBD=90^circ-theta$
      $CD=2$because trapezoid is isosceles


      Apply cosine law in triangle BDC,

      $cos(90-theta)=frac{h^2+2^2-2^2}{2times 2times h}=frac{h}{4}$

      $sintheta=frac{h}{4}..(1)$


      In right triangle $ABD,sin theta=frac{h}{sqrt{h^2+4}}..(2)$

      From $(1)$ and $(2)$,$h=2sqrt3$


      Area of $ABCD=frac{1}{2}times 2times h+frac{1}{2}times 2times 2times sin2theta=3sqrt3$

      But the answer given is $2sqrt2(sqrt{5}+1)$







      geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 18 '18 at 14:46









      user984325user984325

      246112




      246112






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            you are correct. The answer should be $3sqrt{3}$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045246%2fcalculate-the-area-of-trapezoid%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$






                  share|cite|improve this answer









                  $endgroup$



                  I've got $3sqrt 3$ using a slightly different method. $angle BAD=theta$, $angle ABD =90^circ$ means $angle CBD=angle BDA=90^circ-theta$. Since the trapezoid is isosceles, $angle CDA=theta$, and you can get $angle CDB=2theta -90^circ$. Since $BC=AB=CD$ you get $angle CDB=angle CDB$ or $$2theta-90^circ=90^circ-theta$$ so $theta=60^circ$. Drawing perpendiculars from $B$ and $C$ to $AD$, you can get $AD=BC+2ABcos 60^circ=4$, and the height $h=ABsin60^circ=sqrt 3$. Therefore the area is $$frac12 (BC+AD)cdot h=frac12 6sqrt3=3sqrt 3$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 18 '18 at 15:15









                  AndreiAndrei

                  11.7k21026




                  11.7k21026























                      1












                      $begingroup$

                      you are correct. The answer should be $3sqrt{3}$






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        you are correct. The answer should be $3sqrt{3}$






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          you are correct. The answer should be $3sqrt{3}$






                          share|cite|improve this answer









                          $endgroup$



                          you are correct. The answer should be $3sqrt{3}$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Dec 18 '18 at 14:51









                          william122william122

                          52412




                          52412






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045246%2fcalculate-the-area-of-trapezoid%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bressuire

                              Cabo Verde

                              Gyllenstierna