Order Statistics and High Dimension Geometry
$begingroup$
Suppose that I have iid random variables $mathrm U_n sim mathrm U(0,1)$. Then, for $mathrm Y_m$ defined as,
$$mathrm Y_m = min_{n in [1,m]} mathrm U_n$$
it is easy to compute $mathbb{E}[mathrm Y_m] = frac1{m+1}$.
Now consider a compact convex region $mathcal{C}$ in higher dimensions $mathbb{R}^k$ and let $mathbf p_n$ be fixed points in $mathcal C$ where $mathbf p_n$ may lie on the boundary of $mathcal C$. Let $mathrm D_n$ denote iid random variables in $mathcal C$ such that $mathbb P_{mathrm D_n}(S) geq kappa frac{mathrm{vol}(S)}{mathrm{vol}(mathcal C)}~forall Ssubseteq mathcal C$ for some
fixed $kappa < 1$. Thus $mathrm D_n$ denotes a "skewed" uniform distribution of points in $mathcal C$.
Suppose that $mathrm U_n$ now corresponds to the distance of $mathrm D_n$ from $mathbf p_n$ ie. $mathrm U_n triangleq ||mathrm D_n - mathbf p_n||$. Can someone point me in the right direction to find upper bounds on $mathbb E[mathrm Y_n]$ in such cases ( or direct me to references ) ?
probability euclidean-geometry order-statistics expected-value
$endgroup$
add a comment |
$begingroup$
Suppose that I have iid random variables $mathrm U_n sim mathrm U(0,1)$. Then, for $mathrm Y_m$ defined as,
$$mathrm Y_m = min_{n in [1,m]} mathrm U_n$$
it is easy to compute $mathbb{E}[mathrm Y_m] = frac1{m+1}$.
Now consider a compact convex region $mathcal{C}$ in higher dimensions $mathbb{R}^k$ and let $mathbf p_n$ be fixed points in $mathcal C$ where $mathbf p_n$ may lie on the boundary of $mathcal C$. Let $mathrm D_n$ denote iid random variables in $mathcal C$ such that $mathbb P_{mathrm D_n}(S) geq kappa frac{mathrm{vol}(S)}{mathrm{vol}(mathcal C)}~forall Ssubseteq mathcal C$ for some
fixed $kappa < 1$. Thus $mathrm D_n$ denotes a "skewed" uniform distribution of points in $mathcal C$.
Suppose that $mathrm U_n$ now corresponds to the distance of $mathrm D_n$ from $mathbf p_n$ ie. $mathrm U_n triangleq ||mathrm D_n - mathbf p_n||$. Can someone point me in the right direction to find upper bounds on $mathbb E[mathrm Y_n]$ in such cases ( or direct me to references ) ?
probability euclidean-geometry order-statistics expected-value
$endgroup$
add a comment |
$begingroup$
Suppose that I have iid random variables $mathrm U_n sim mathrm U(0,1)$. Then, for $mathrm Y_m$ defined as,
$$mathrm Y_m = min_{n in [1,m]} mathrm U_n$$
it is easy to compute $mathbb{E}[mathrm Y_m] = frac1{m+1}$.
Now consider a compact convex region $mathcal{C}$ in higher dimensions $mathbb{R}^k$ and let $mathbf p_n$ be fixed points in $mathcal C$ where $mathbf p_n$ may lie on the boundary of $mathcal C$. Let $mathrm D_n$ denote iid random variables in $mathcal C$ such that $mathbb P_{mathrm D_n}(S) geq kappa frac{mathrm{vol}(S)}{mathrm{vol}(mathcal C)}~forall Ssubseteq mathcal C$ for some
fixed $kappa < 1$. Thus $mathrm D_n$ denotes a "skewed" uniform distribution of points in $mathcal C$.
Suppose that $mathrm U_n$ now corresponds to the distance of $mathrm D_n$ from $mathbf p_n$ ie. $mathrm U_n triangleq ||mathrm D_n - mathbf p_n||$. Can someone point me in the right direction to find upper bounds on $mathbb E[mathrm Y_n]$ in such cases ( or direct me to references ) ?
probability euclidean-geometry order-statistics expected-value
$endgroup$
Suppose that I have iid random variables $mathrm U_n sim mathrm U(0,1)$. Then, for $mathrm Y_m$ defined as,
$$mathrm Y_m = min_{n in [1,m]} mathrm U_n$$
it is easy to compute $mathbb{E}[mathrm Y_m] = frac1{m+1}$.
Now consider a compact convex region $mathcal{C}$ in higher dimensions $mathbb{R}^k$ and let $mathbf p_n$ be fixed points in $mathcal C$ where $mathbf p_n$ may lie on the boundary of $mathcal C$. Let $mathrm D_n$ denote iid random variables in $mathcal C$ such that $mathbb P_{mathrm D_n}(S) geq kappa frac{mathrm{vol}(S)}{mathrm{vol}(mathcal C)}~forall Ssubseteq mathcal C$ for some
fixed $kappa < 1$. Thus $mathrm D_n$ denotes a "skewed" uniform distribution of points in $mathcal C$.
Suppose that $mathrm U_n$ now corresponds to the distance of $mathrm D_n$ from $mathbf p_n$ ie. $mathrm U_n triangleq ||mathrm D_n - mathbf p_n||$. Can someone point me in the right direction to find upper bounds on $mathbb E[mathrm Y_n]$ in such cases ( or direct me to references ) ?
probability euclidean-geometry order-statistics expected-value
probability euclidean-geometry order-statistics expected-value
asked Dec 18 '18 at 14:11
UnadulteratedImaginationUnadulteratedImagination
422213
422213
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045207%2forder-statistics-and-high-dimension-geometry%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045207%2forder-statistics-and-high-dimension-geometry%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown