Differentiability for a multivariable piecewise function












0












$begingroup$



$$f(x,y)=
begin{cases}
dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
end{cases}
$$




I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.



So that would be:



$$f(x,y)=
begin{cases}
limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
end{cases}
$$



and they have to be the same limit.



Same thing with the partial derivatives:
$$begin{align}
partial_xf(x,y)&=
begin{cases}
limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
limlimits_{hto0} dfrac{h^2}{h^2}=1
end{cases}\
partial_yf(x,y)&=
begin{cases}
limlimits_{kto0} dfrac{-k}{k}=-1\
limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
end{cases}
end{align}$$



So $f$ is not differentiable for any $alpha$



Is this correct?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$



    $$f(x,y)=
    begin{cases}
    dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
    dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
    end{cases}
    $$




    I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
    When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.



    So that would be:



    $$f(x,y)=
    begin{cases}
    limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
    limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
    end{cases}
    $$



    and they have to be the same limit.



    Same thing with the partial derivatives:
    $$begin{align}
    partial_xf(x,y)&=
    begin{cases}
    limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
    limlimits_{hto0} dfrac{h^2}{h^2}=1
    end{cases}\
    partial_yf(x,y)&=
    begin{cases}
    limlimits_{kto0} dfrac{-k}{k}=-1\
    limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
    end{cases}
    end{align}$$



    So $f$ is not differentiable for any $alpha$



    Is this correct?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$



      $$f(x,y)=
      begin{cases}
      dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
      dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
      end{cases}
      $$




      I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
      When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.



      So that would be:



      $$f(x,y)=
      begin{cases}
      limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
      limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
      end{cases}
      $$



      and they have to be the same limit.



      Same thing with the partial derivatives:
      $$begin{align}
      partial_xf(x,y)&=
      begin{cases}
      limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
      limlimits_{hto0} dfrac{h^2}{h^2}=1
      end{cases}\
      partial_yf(x,y)&=
      begin{cases}
      limlimits_{kto0} dfrac{-k}{k}=-1\
      limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
      end{cases}
      end{align}$$



      So $f$ is not differentiable for any $alpha$



      Is this correct?










      share|cite|improve this question











      $endgroup$





      $$f(x,y)=
      begin{cases}
      dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
      dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
      end{cases}
      $$




      I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
      When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.



      So that would be:



      $$f(x,y)=
      begin{cases}
      limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
      limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
      end{cases}
      $$



      and they have to be the same limit.



      Same thing with the partial derivatives:
      $$begin{align}
      partial_xf(x,y)&=
      begin{cases}
      limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
      limlimits_{hto0} dfrac{h^2}{h^2}=1
      end{cases}\
      partial_yf(x,y)&=
      begin{cases}
      limlimits_{kto0} dfrac{-k}{k}=-1\
      limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
      end{cases}
      end{align}$$



      So $f$ is not differentiable for any $alpha$



      Is this correct?







      multivariable-calculus






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 20 '18 at 5:16









      Dylan

      12.5k31026




      12.5k31026










      asked Dec 18 '18 at 21:15









      ArchimedessArchimedess

      235




      235






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045706%2fdifferentiability-for-a-multivariable-piecewise-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045706%2fdifferentiability-for-a-multivariable-piecewise-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna