Differentiability for a multivariable piecewise function
$begingroup$
$$f(x,y)=
begin{cases}
dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
end{cases}
$$
I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.
So that would be:
$$f(x,y)=
begin{cases}
limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
end{cases}
$$
and they have to be the same limit.
Same thing with the partial derivatives:
$$begin{align}
partial_xf(x,y)&=
begin{cases}
limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
limlimits_{hto0} dfrac{h^2}{h^2}=1
end{cases}\
partial_yf(x,y)&=
begin{cases}
limlimits_{kto0} dfrac{-k}{k}=-1\
limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
end{cases}
end{align}$$
So $f$ is not differentiable for any $alpha$
Is this correct?
multivariable-calculus
$endgroup$
add a comment |
$begingroup$
$$f(x,y)=
begin{cases}
dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
end{cases}
$$
I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.
So that would be:
$$f(x,y)=
begin{cases}
limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
end{cases}
$$
and they have to be the same limit.
Same thing with the partial derivatives:
$$begin{align}
partial_xf(x,y)&=
begin{cases}
limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
limlimits_{hto0} dfrac{h^2}{h^2}=1
end{cases}\
partial_yf(x,y)&=
begin{cases}
limlimits_{kto0} dfrac{-k}{k}=-1\
limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
end{cases}
end{align}$$
So $f$ is not differentiable for any $alpha$
Is this correct?
multivariable-calculus
$endgroup$
add a comment |
$begingroup$
$$f(x,y)=
begin{cases}
dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
end{cases}
$$
I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.
So that would be:
$$f(x,y)=
begin{cases}
limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
end{cases}
$$
and they have to be the same limit.
Same thing with the partial derivatives:
$$begin{align}
partial_xf(x,y)&=
begin{cases}
limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
limlimits_{hto0} dfrac{h^2}{h^2}=1
end{cases}\
partial_yf(x,y)&=
begin{cases}
limlimits_{kto0} dfrac{-k}{k}=-1\
limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
end{cases}
end{align}$$
So $f$ is not differentiable for any $alpha$
Is this correct?
multivariable-calculus
$endgroup$
$$f(x,y)=
begin{cases}
dfrac{sinh(xy)+2x^2-y}{1+x^2} &&,text{if } |y|leqsqrt{|x|}text{ and } y=-x^2\
dfrac{x^2+(2-alpha)y+y^2}{y+x^2} &&,text{otherwise}
end{cases}
$$
I have to study the differentiability of $f$ in the origin, and say if $f$ is differentiable for at least one real $alpha$.
When it comes to study the differentiability of the function I'm stuck for what piece of function I have to choose, my first thought was to study both together but I'm not sure.
So that would be:
$$f(x,y)=
begin{cases}
limlimits_{h,kto(0,0)} dfrac{sinh(hk)+2h^2-k-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}\
limlimits_{h,kto(0,0)} dfrac{h^2(2-alpha)k+k^2-partial_x(0,0)-partial_y(0,0)-f(0,0)}{(1+h^2)sqrt{h^2+k^2}}
end{cases}
$$
and they have to be the same limit.
Same thing with the partial derivatives:
$$begin{align}
partial_xf(x,y)&=
begin{cases}
limlimits_{hto0} dfrac{2h^2}{h+h^3}=0\
limlimits_{hto0} dfrac{h^2}{h^2}=1
end{cases}\
partial_yf(x,y)&=
begin{cases}
limlimits_{kto0} dfrac{-k}{k}=-1\
limlimits_{kto0} dfrac{(2-alpha)k+k^2}{k^2}=+infty
end{cases}
end{align}$$
So $f$ is not differentiable for any $alpha$
Is this correct?
multivariable-calculus
multivariable-calculus
edited Dec 20 '18 at 5:16
Dylan
12.5k31026
12.5k31026
asked Dec 18 '18 at 21:15
ArchimedessArchimedess
235
235
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045706%2fdifferentiability-for-a-multivariable-piecewise-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045706%2fdifferentiability-for-a-multivariable-piecewise-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown