Symmetric continued fractions property where $q^2equiv(-1)^n$ mod $p$
Let $[a_0,a_1,a_2,ldots,a_n,a_n,ldots,a_2,a_1,a_0]=:frac{p}{q}inmathbb{Q}$ be a symmetric continued fraction. This sequence of $a_i$'s consists of finitely many elements because $frac{p}{q}$ is rational. I need to prove that $q^2equiv(-1)^r$ mod $p$ with $r$ the length of the sequence of $a_i$'s.
I'm getting pretty stuck from the beginning. There's a big chance I have to use the property $p_{n-1}q_n-p_nq_{n-1}=(-1)^n$. I guess saying that $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ would really come in hand for this would prove the statement immedeately, but I don't see/know how to prove this last equality. Any help is appreciated.
Note: the $p_i$'s and $q_i$'s are from the continued fractions of $p$ and $q$ respectively.
Try: By a lemma from my book we can use the following algorithm:
$$begin{bmatrix}
p_i&p_{i-1}\
q_i&q_{i-1}
end{bmatrix}
=
begin{bmatrix}
p_{i-1}&p_{i-2}\
q_{i-1}&q_{i-2}
end{bmatrix}
begin{bmatrix}
a_i&1\
1&0
end{bmatrix}, text{where }begin{bmatrix}
p_{-1}&p_{-2}\
q_{-1}&q_{-2}
end{bmatrix}=I_2 text{and } igeqslant0.$$
So we have the following using symmetry of the continued fractions:
$$begin{align*}q_0&=1,\ q_1&=a_1,\
&vdots\q_{n-1}&=a_{1}q_{n-2}+q_{n-3} (a_1=a_{n-1}),\ q_n&=a_0q_{n-1}+q_{n-2}.end{align*}$$
We also have:
$$begin{align*}
p_0&=a_0,\ p_1&=a_1p_0+1,\
&vdots\p_{n-1}&=a_{1}p_{n-2}+p_{n-3} (a_1=a_{n-1}),\ p_n&=a_0p_{n-1}+p_{n-2}.
end{align*}$$
Somehow it should now turn out to be true that $q_n=p_{n-1}$. How to continue from here on? Please verify my answer below if you are able to.
number-theory modular-arithmetic recurrence-relations continued-fractions
add a comment |
Let $[a_0,a_1,a_2,ldots,a_n,a_n,ldots,a_2,a_1,a_0]=:frac{p}{q}inmathbb{Q}$ be a symmetric continued fraction. This sequence of $a_i$'s consists of finitely many elements because $frac{p}{q}$ is rational. I need to prove that $q^2equiv(-1)^r$ mod $p$ with $r$ the length of the sequence of $a_i$'s.
I'm getting pretty stuck from the beginning. There's a big chance I have to use the property $p_{n-1}q_n-p_nq_{n-1}=(-1)^n$. I guess saying that $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ would really come in hand for this would prove the statement immedeately, but I don't see/know how to prove this last equality. Any help is appreciated.
Note: the $p_i$'s and $q_i$'s are from the continued fractions of $p$ and $q$ respectively.
Try: By a lemma from my book we can use the following algorithm:
$$begin{bmatrix}
p_i&p_{i-1}\
q_i&q_{i-1}
end{bmatrix}
=
begin{bmatrix}
p_{i-1}&p_{i-2}\
q_{i-1}&q_{i-2}
end{bmatrix}
begin{bmatrix}
a_i&1\
1&0
end{bmatrix}, text{where }begin{bmatrix}
p_{-1}&p_{-2}\
q_{-1}&q_{-2}
end{bmatrix}=I_2 text{and } igeqslant0.$$
So we have the following using symmetry of the continued fractions:
$$begin{align*}q_0&=1,\ q_1&=a_1,\
&vdots\q_{n-1}&=a_{1}q_{n-2}+q_{n-3} (a_1=a_{n-1}),\ q_n&=a_0q_{n-1}+q_{n-2}.end{align*}$$
We also have:
$$begin{align*}
p_0&=a_0,\ p_1&=a_1p_0+1,\
&vdots\p_{n-1}&=a_{1}p_{n-2}+p_{n-3} (a_1=a_{n-1}),\ p_n&=a_0p_{n-1}+p_{n-2}.
end{align*}$$
Somehow it should now turn out to be true that $q_n=p_{n-1}$. How to continue from here on? Please verify my answer below if you are able to.
number-theory modular-arithmetic recurrence-relations continued-fractions
add a comment |
Let $[a_0,a_1,a_2,ldots,a_n,a_n,ldots,a_2,a_1,a_0]=:frac{p}{q}inmathbb{Q}$ be a symmetric continued fraction. This sequence of $a_i$'s consists of finitely many elements because $frac{p}{q}$ is rational. I need to prove that $q^2equiv(-1)^r$ mod $p$ with $r$ the length of the sequence of $a_i$'s.
I'm getting pretty stuck from the beginning. There's a big chance I have to use the property $p_{n-1}q_n-p_nq_{n-1}=(-1)^n$. I guess saying that $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ would really come in hand for this would prove the statement immedeately, but I don't see/know how to prove this last equality. Any help is appreciated.
Note: the $p_i$'s and $q_i$'s are from the continued fractions of $p$ and $q$ respectively.
Try: By a lemma from my book we can use the following algorithm:
$$begin{bmatrix}
p_i&p_{i-1}\
q_i&q_{i-1}
end{bmatrix}
=
begin{bmatrix}
p_{i-1}&p_{i-2}\
q_{i-1}&q_{i-2}
end{bmatrix}
begin{bmatrix}
a_i&1\
1&0
end{bmatrix}, text{where }begin{bmatrix}
p_{-1}&p_{-2}\
q_{-1}&q_{-2}
end{bmatrix}=I_2 text{and } igeqslant0.$$
So we have the following using symmetry of the continued fractions:
$$begin{align*}q_0&=1,\ q_1&=a_1,\
&vdots\q_{n-1}&=a_{1}q_{n-2}+q_{n-3} (a_1=a_{n-1}),\ q_n&=a_0q_{n-1}+q_{n-2}.end{align*}$$
We also have:
$$begin{align*}
p_0&=a_0,\ p_1&=a_1p_0+1,\
&vdots\p_{n-1}&=a_{1}p_{n-2}+p_{n-3} (a_1=a_{n-1}),\ p_n&=a_0p_{n-1}+p_{n-2}.
end{align*}$$
Somehow it should now turn out to be true that $q_n=p_{n-1}$. How to continue from here on? Please verify my answer below if you are able to.
number-theory modular-arithmetic recurrence-relations continued-fractions
Let $[a_0,a_1,a_2,ldots,a_n,a_n,ldots,a_2,a_1,a_0]=:frac{p}{q}inmathbb{Q}$ be a symmetric continued fraction. This sequence of $a_i$'s consists of finitely many elements because $frac{p}{q}$ is rational. I need to prove that $q^2equiv(-1)^r$ mod $p$ with $r$ the length of the sequence of $a_i$'s.
I'm getting pretty stuck from the beginning. There's a big chance I have to use the property $p_{n-1}q_n-p_nq_{n-1}=(-1)^n$. I guess saying that $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ would really come in hand for this would prove the statement immedeately, but I don't see/know how to prove this last equality. Any help is appreciated.
Note: the $p_i$'s and $q_i$'s are from the continued fractions of $p$ and $q$ respectively.
Try: By a lemma from my book we can use the following algorithm:
$$begin{bmatrix}
p_i&p_{i-1}\
q_i&q_{i-1}
end{bmatrix}
=
begin{bmatrix}
p_{i-1}&p_{i-2}\
q_{i-1}&q_{i-2}
end{bmatrix}
begin{bmatrix}
a_i&1\
1&0
end{bmatrix}, text{where }begin{bmatrix}
p_{-1}&p_{-2}\
q_{-1}&q_{-2}
end{bmatrix}=I_2 text{and } igeqslant0.$$
So we have the following using symmetry of the continued fractions:
$$begin{align*}q_0&=1,\ q_1&=a_1,\
&vdots\q_{n-1}&=a_{1}q_{n-2}+q_{n-3} (a_1=a_{n-1}),\ q_n&=a_0q_{n-1}+q_{n-2}.end{align*}$$
We also have:
$$begin{align*}
p_0&=a_0,\ p_1&=a_1p_0+1,\
&vdots\p_{n-1}&=a_{1}p_{n-2}+p_{n-3} (a_1=a_{n-1}),\ p_n&=a_0p_{n-1}+p_{n-2}.
end{align*}$$
Somehow it should now turn out to be true that $q_n=p_{n-1}$. How to continue from here on? Please verify my answer below if you are able to.
number-theory modular-arithmetic recurrence-relations continued-fractions
number-theory modular-arithmetic recurrence-relations continued-fractions
edited Dec 11 at 13:58
asked Dec 8 at 17:37
Guus Palmer
620319
620319
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
I guess I figured it out now. We can make a straight forward argument as follows:
$$begin{align*}frac{p_n}{p_{n-1}} =
frac{a_n*p_{n-1}}{p_{n-1}} +
frac{p_{n-2}}{p_{n-1}} =
a_n +
frac{p_{n-2}}{p_{n-1}} =
a_n + frac{1}{frac{p_{n-1}}{p_{n-2}}}.
end{align*}$$
Then $frac{p_{n-1}}{p_{n-2}}=a_{n-1}+frac{1}{frac{p_{n-2}}{p_{n-3}}}$ and so on.
Continue doing this for arbitrary $n$ and get:
$$frac{p_n}{p_{n-1}} =a_n + frac{1}{a_{n-1} + frac{1}{a_{n-2} + frac{1}{frac{p_{n-3}}{ddots}}}} = [a_{n},a_{n-1},a_{n-2},ldots,a_{0}].$$ Now $p_{n-1}q_{n}-p_nq_{n-1}=q_{n}^2-p_nq_{n-1}=(-1)^n$ by $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ from what I stated earlier. Hence, $q^2equiv(-1)^n$ mod $p$. $Box$.
add a comment |
I think a bit more detail about the recursion is useful.
As noted in the answer by Guus Palmer,
$$
begin{align}
frac{p_n}{p_{n-1}}
&=left(a_n;frac{p_{n-1}}{p_{n-2}}right)\
&=left(a_n;a_{n-1},frac{p_{n-2}}{p_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{frac{p_0}{p_{-1}}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{a_0}right)tag1
end{align}
$$
$$ %begin{align} frac{p_n}{p_{n-1}} &=a_n+cfrac1{frac{p_{n-1}}{p_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{p_{n-2}}{p_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{frac{p_0}{p_{-1}}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{a_0}}}end{matrix}}}}\ end{align} $$
Since $p_{-2}=0$ and $p_{-1}=1$ in the standard recursion.
However, note that the sequence of denominators also follows the same initial recursion:
$$
begin{align}
frac{q_n}{q_{n-1}}
&=left(a_n;frac{q_{n-1}}{q_{n-2}}right)\
&=left(a_n;a_{n-1},frac{q_{n-2}}{q_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{frac{q_1}{q_0}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{a_1}right)tag2
end{align}
$$
$$ %begin{align} frac{q_n}{q_{n-1}} &=a_n+cfrac1{frac{q_{n-1}}{q_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{q_{n-2}}{q_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{frac{q_1}{q_0}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{a_1}}}end{matrix}}}}\ end{align} $$
Since $q_{-2}=1$ and $q_{-1}=0$ in the standard recursion, we cannot extend the continued fraction to include $frac{q_0}{q_{-1}}$ as we did with $frac{p_n}{p_{n-1}}$.
So we need to be careful about considering the beginning of the continued fraction without being careful of the ending terms. Although the later terms are less significant, in this case, they are important.
The rest of the answer is fine. For sequential approximants of any continued fraction, we have
$$
p_{k-1}q_k-p_kq_{k-1}=(-1)^ktag3
$$
Since
$$
frac{p_n}{q_n}=(a_0;a_1,a_2,dots,a_{n-1},a_n)tag4
$$
is a palindromic continued fraction, we have from $(1)$ and $(4)$
$$
frac{p_n}{q_n}=frac{p_n}{p_{n-1}}tag5
$$
and applying $(5)$ to $(3)$, with $k=n$, we get
$$
q_n^2-p_nq_{n-1}=(-1)^ntag6
$$
That is,
$$
q_n^2equiv(-1)^npmod{p_n}tag7
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031393%2fsymmetric-continued-fractions-property-where-q2-equiv-1n-mod-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
I guess I figured it out now. We can make a straight forward argument as follows:
$$begin{align*}frac{p_n}{p_{n-1}} =
frac{a_n*p_{n-1}}{p_{n-1}} +
frac{p_{n-2}}{p_{n-1}} =
a_n +
frac{p_{n-2}}{p_{n-1}} =
a_n + frac{1}{frac{p_{n-1}}{p_{n-2}}}.
end{align*}$$
Then $frac{p_{n-1}}{p_{n-2}}=a_{n-1}+frac{1}{frac{p_{n-2}}{p_{n-3}}}$ and so on.
Continue doing this for arbitrary $n$ and get:
$$frac{p_n}{p_{n-1}} =a_n + frac{1}{a_{n-1} + frac{1}{a_{n-2} + frac{1}{frac{p_{n-3}}{ddots}}}} = [a_{n},a_{n-1},a_{n-2},ldots,a_{0}].$$ Now $p_{n-1}q_{n}-p_nq_{n-1}=q_{n}^2-p_nq_{n-1}=(-1)^n$ by $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ from what I stated earlier. Hence, $q^2equiv(-1)^n$ mod $p$. $Box$.
add a comment |
I guess I figured it out now. We can make a straight forward argument as follows:
$$begin{align*}frac{p_n}{p_{n-1}} =
frac{a_n*p_{n-1}}{p_{n-1}} +
frac{p_{n-2}}{p_{n-1}} =
a_n +
frac{p_{n-2}}{p_{n-1}} =
a_n + frac{1}{frac{p_{n-1}}{p_{n-2}}}.
end{align*}$$
Then $frac{p_{n-1}}{p_{n-2}}=a_{n-1}+frac{1}{frac{p_{n-2}}{p_{n-3}}}$ and so on.
Continue doing this for arbitrary $n$ and get:
$$frac{p_n}{p_{n-1}} =a_n + frac{1}{a_{n-1} + frac{1}{a_{n-2} + frac{1}{frac{p_{n-3}}{ddots}}}} = [a_{n},a_{n-1},a_{n-2},ldots,a_{0}].$$ Now $p_{n-1}q_{n}-p_nq_{n-1}=q_{n}^2-p_nq_{n-1}=(-1)^n$ by $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ from what I stated earlier. Hence, $q^2equiv(-1)^n$ mod $p$. $Box$.
add a comment |
I guess I figured it out now. We can make a straight forward argument as follows:
$$begin{align*}frac{p_n}{p_{n-1}} =
frac{a_n*p_{n-1}}{p_{n-1}} +
frac{p_{n-2}}{p_{n-1}} =
a_n +
frac{p_{n-2}}{p_{n-1}} =
a_n + frac{1}{frac{p_{n-1}}{p_{n-2}}}.
end{align*}$$
Then $frac{p_{n-1}}{p_{n-2}}=a_{n-1}+frac{1}{frac{p_{n-2}}{p_{n-3}}}$ and so on.
Continue doing this for arbitrary $n$ and get:
$$frac{p_n}{p_{n-1}} =a_n + frac{1}{a_{n-1} + frac{1}{a_{n-2} + frac{1}{frac{p_{n-3}}{ddots}}}} = [a_{n},a_{n-1},a_{n-2},ldots,a_{0}].$$ Now $p_{n-1}q_{n}-p_nq_{n-1}=q_{n}^2-p_nq_{n-1}=(-1)^n$ by $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ from what I stated earlier. Hence, $q^2equiv(-1)^n$ mod $p$. $Box$.
I guess I figured it out now. We can make a straight forward argument as follows:
$$begin{align*}frac{p_n}{p_{n-1}} =
frac{a_n*p_{n-1}}{p_{n-1}} +
frac{p_{n-2}}{p_{n-1}} =
a_n +
frac{p_{n-2}}{p_{n-1}} =
a_n + frac{1}{frac{p_{n-1}}{p_{n-2}}}.
end{align*}$$
Then $frac{p_{n-1}}{p_{n-2}}=a_{n-1}+frac{1}{frac{p_{n-2}}{p_{n-3}}}$ and so on.
Continue doing this for arbitrary $n$ and get:
$$frac{p_n}{p_{n-1}} =a_n + frac{1}{a_{n-1} + frac{1}{a_{n-2} + frac{1}{frac{p_{n-3}}{ddots}}}} = [a_{n},a_{n-1},a_{n-2},ldots,a_{0}].$$ Now $p_{n-1}q_{n}-p_nq_{n-1}=q_{n}^2-p_nq_{n-1}=(-1)^n$ by $frac{p_n}{q_n}=frac{p_n}{p_{n-1}}$ from what I stated earlier. Hence, $q^2equiv(-1)^n$ mod $p$. $Box$.
edited Dec 11 at 14:02
answered Dec 11 at 13:46
Guus Palmer
620319
620319
add a comment |
add a comment |
I think a bit more detail about the recursion is useful.
As noted in the answer by Guus Palmer,
$$
begin{align}
frac{p_n}{p_{n-1}}
&=left(a_n;frac{p_{n-1}}{p_{n-2}}right)\
&=left(a_n;a_{n-1},frac{p_{n-2}}{p_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{frac{p_0}{p_{-1}}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{a_0}right)tag1
end{align}
$$
$$ %begin{align} frac{p_n}{p_{n-1}} &=a_n+cfrac1{frac{p_{n-1}}{p_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{p_{n-2}}{p_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{frac{p_0}{p_{-1}}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{a_0}}}end{matrix}}}}\ end{align} $$
Since $p_{-2}=0$ and $p_{-1}=1$ in the standard recursion.
However, note that the sequence of denominators also follows the same initial recursion:
$$
begin{align}
frac{q_n}{q_{n-1}}
&=left(a_n;frac{q_{n-1}}{q_{n-2}}right)\
&=left(a_n;a_{n-1},frac{q_{n-2}}{q_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{frac{q_1}{q_0}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{a_1}right)tag2
end{align}
$$
$$ %begin{align} frac{q_n}{q_{n-1}} &=a_n+cfrac1{frac{q_{n-1}}{q_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{q_{n-2}}{q_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{frac{q_1}{q_0}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{a_1}}}end{matrix}}}}\ end{align} $$
Since $q_{-2}=1$ and $q_{-1}=0$ in the standard recursion, we cannot extend the continued fraction to include $frac{q_0}{q_{-1}}$ as we did with $frac{p_n}{p_{n-1}}$.
So we need to be careful about considering the beginning of the continued fraction without being careful of the ending terms. Although the later terms are less significant, in this case, they are important.
The rest of the answer is fine. For sequential approximants of any continued fraction, we have
$$
p_{k-1}q_k-p_kq_{k-1}=(-1)^ktag3
$$
Since
$$
frac{p_n}{q_n}=(a_0;a_1,a_2,dots,a_{n-1},a_n)tag4
$$
is a palindromic continued fraction, we have from $(1)$ and $(4)$
$$
frac{p_n}{q_n}=frac{p_n}{p_{n-1}}tag5
$$
and applying $(5)$ to $(3)$, with $k=n$, we get
$$
q_n^2-p_nq_{n-1}=(-1)^ntag6
$$
That is,
$$
q_n^2equiv(-1)^npmod{p_n}tag7
$$
add a comment |
I think a bit more detail about the recursion is useful.
As noted in the answer by Guus Palmer,
$$
begin{align}
frac{p_n}{p_{n-1}}
&=left(a_n;frac{p_{n-1}}{p_{n-2}}right)\
&=left(a_n;a_{n-1},frac{p_{n-2}}{p_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{frac{p_0}{p_{-1}}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{a_0}right)tag1
end{align}
$$
$$ %begin{align} frac{p_n}{p_{n-1}} &=a_n+cfrac1{frac{p_{n-1}}{p_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{p_{n-2}}{p_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{frac{p_0}{p_{-1}}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{a_0}}}end{matrix}}}}\ end{align} $$
Since $p_{-2}=0$ and $p_{-1}=1$ in the standard recursion.
However, note that the sequence of denominators also follows the same initial recursion:
$$
begin{align}
frac{q_n}{q_{n-1}}
&=left(a_n;frac{q_{n-1}}{q_{n-2}}right)\
&=left(a_n;a_{n-1},frac{q_{n-2}}{q_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{frac{q_1}{q_0}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{a_1}right)tag2
end{align}
$$
$$ %begin{align} frac{q_n}{q_{n-1}} &=a_n+cfrac1{frac{q_{n-1}}{q_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{q_{n-2}}{q_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{frac{q_1}{q_0}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{a_1}}}end{matrix}}}}\ end{align} $$
Since $q_{-2}=1$ and $q_{-1}=0$ in the standard recursion, we cannot extend the continued fraction to include $frac{q_0}{q_{-1}}$ as we did with $frac{p_n}{p_{n-1}}$.
So we need to be careful about considering the beginning of the continued fraction without being careful of the ending terms. Although the later terms are less significant, in this case, they are important.
The rest of the answer is fine. For sequential approximants of any continued fraction, we have
$$
p_{k-1}q_k-p_kq_{k-1}=(-1)^ktag3
$$
Since
$$
frac{p_n}{q_n}=(a_0;a_1,a_2,dots,a_{n-1},a_n)tag4
$$
is a palindromic continued fraction, we have from $(1)$ and $(4)$
$$
frac{p_n}{q_n}=frac{p_n}{p_{n-1}}tag5
$$
and applying $(5)$ to $(3)$, with $k=n$, we get
$$
q_n^2-p_nq_{n-1}=(-1)^ntag6
$$
That is,
$$
q_n^2equiv(-1)^npmod{p_n}tag7
$$
add a comment |
I think a bit more detail about the recursion is useful.
As noted in the answer by Guus Palmer,
$$
begin{align}
frac{p_n}{p_{n-1}}
&=left(a_n;frac{p_{n-1}}{p_{n-2}}right)\
&=left(a_n;a_{n-1},frac{p_{n-2}}{p_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{frac{p_0}{p_{-1}}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{a_0}right)tag1
end{align}
$$
$$ %begin{align} frac{p_n}{p_{n-1}} &=a_n+cfrac1{frac{p_{n-1}}{p_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{p_{n-2}}{p_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{frac{p_0}{p_{-1}}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{a_0}}}end{matrix}}}}\ end{align} $$
Since $p_{-2}=0$ and $p_{-1}=1$ in the standard recursion.
However, note that the sequence of denominators also follows the same initial recursion:
$$
begin{align}
frac{q_n}{q_{n-1}}
&=left(a_n;frac{q_{n-1}}{q_{n-2}}right)\
&=left(a_n;a_{n-1},frac{q_{n-2}}{q_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{frac{q_1}{q_0}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{a_1}right)tag2
end{align}
$$
$$ %begin{align} frac{q_n}{q_{n-1}} &=a_n+cfrac1{frac{q_{n-1}}{q_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{q_{n-2}}{q_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{frac{q_1}{q_0}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{a_1}}}end{matrix}}}}\ end{align} $$
Since $q_{-2}=1$ and $q_{-1}=0$ in the standard recursion, we cannot extend the continued fraction to include $frac{q_0}{q_{-1}}$ as we did with $frac{p_n}{p_{n-1}}$.
So we need to be careful about considering the beginning of the continued fraction without being careful of the ending terms. Although the later terms are less significant, in this case, they are important.
The rest of the answer is fine. For sequential approximants of any continued fraction, we have
$$
p_{k-1}q_k-p_kq_{k-1}=(-1)^ktag3
$$
Since
$$
frac{p_n}{q_n}=(a_0;a_1,a_2,dots,a_{n-1},a_n)tag4
$$
is a palindromic continued fraction, we have from $(1)$ and $(4)$
$$
frac{p_n}{q_n}=frac{p_n}{p_{n-1}}tag5
$$
and applying $(5)$ to $(3)$, with $k=n$, we get
$$
q_n^2-p_nq_{n-1}=(-1)^ntag6
$$
That is,
$$
q_n^2equiv(-1)^npmod{p_n}tag7
$$
I think a bit more detail about the recursion is useful.
As noted in the answer by Guus Palmer,
$$
begin{align}
frac{p_n}{p_{n-1}}
&=left(a_n;frac{p_{n-1}}{p_{n-2}}right)\
&=left(a_n;a_{n-1},frac{p_{n-2}}{p_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{frac{p_0}{p_{-1}}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_1,color{#C00}{a_0}right)tag1
end{align}
$$
$$ %begin{align} frac{p_n}{p_{n-1}} &=a_n+cfrac1{frac{p_{n-1}}{p_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{p_{n-2}}{p_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{frac{p_0}{p_{-1}}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_1+cfrac1{color{#C00}{a_0}}}end{matrix}}}}\ end{align} $$
Since $p_{-2}=0$ and $p_{-1}=1$ in the standard recursion.
However, note that the sequence of denominators also follows the same initial recursion:
$$
begin{align}
frac{q_n}{q_{n-1}}
&=left(a_n;frac{q_{n-1}}{q_{n-2}}right)\
&=left(a_n;a_{n-1},frac{q_{n-2}}{q_{n-3}}right)\
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{frac{q_1}{q_0}}right)\[6pt]
&=left(a_n;a_{n-1},a_{n-2},dots,a_2,color{#C00}{a_1}right)tag2
end{align}
$$
$$ %begin{align} frac{q_n}{q_{n-1}} &=a_n+cfrac1{frac{q_{n-1}}{q_{n-2}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{frac{q_{n-2}}{q_{n-3}}}}\ &,,vdots\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{frac{q_1}{q_0}}}}end{matrix}}}}\ &=a_n+cfrac1{a_{n-1}+cfrac1{a_{n-2}+cfrac1{begin{matrix}ddots&lower{18pt}{a_2+cfrac1{color{#C00}{a_1}}}end{matrix}}}}\ end{align} $$
Since $q_{-2}=1$ and $q_{-1}=0$ in the standard recursion, we cannot extend the continued fraction to include $frac{q_0}{q_{-1}}$ as we did with $frac{p_n}{p_{n-1}}$.
So we need to be careful about considering the beginning of the continued fraction without being careful of the ending terms. Although the later terms are less significant, in this case, they are important.
The rest of the answer is fine. For sequential approximants of any continued fraction, we have
$$
p_{k-1}q_k-p_kq_{k-1}=(-1)^ktag3
$$
Since
$$
frac{p_n}{q_n}=(a_0;a_1,a_2,dots,a_{n-1},a_n)tag4
$$
is a palindromic continued fraction, we have from $(1)$ and $(4)$
$$
frac{p_n}{q_n}=frac{p_n}{p_{n-1}}tag5
$$
and applying $(5)$ to $(3)$, with $k=n$, we get
$$
q_n^2-p_nq_{n-1}=(-1)^ntag6
$$
That is,
$$
q_n^2equiv(-1)^npmod{p_n}tag7
$$
answered Dec 13 at 17:00
robjohn♦
264k27303623
264k27303623
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031393%2fsymmetric-continued-fractions-property-where-q2-equiv-1n-mod-p%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown