Prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.












2












$begingroup$


Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.



I, therefore, post the proof in the answer section after it has been approved.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your problem makes no sense. What are the $alpha_i$'s?
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 11:58










  • $begingroup$
    @ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:00












  • $begingroup$
    That answer makes no sense either.
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 12:01












  • $begingroup$
    Okay, let me edit my post then. Just some time!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:02










  • $begingroup$
    @José Carlos Santos: Kindly check, I made some edits. It should be fine now!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:07
















2












$begingroup$


Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.



I, therefore, post the proof in the answer section after it has been approved.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your problem makes no sense. What are the $alpha_i$'s?
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 11:58










  • $begingroup$
    @ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:00












  • $begingroup$
    That answer makes no sense either.
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 12:01












  • $begingroup$
    Okay, let me edit my post then. Just some time!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:02










  • $begingroup$
    @José Carlos Santos: Kindly check, I made some edits. It should be fine now!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:07














2












2








2


1



$begingroup$


Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.



I, therefore, post the proof in the answer section after it has been approved.










share|cite|improve this question











$endgroup$




Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.



I, therefore, post the proof in the answer section after it has been approved.







linear-algebra functional-analysis norm normed-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 27 '18 at 14:18







Omojola Micheal

















asked Dec 26 '18 at 11:52









Omojola MichealOmojola Micheal

1,853324




1,853324












  • $begingroup$
    Your problem makes no sense. What are the $alpha_i$'s?
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 11:58










  • $begingroup$
    @ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:00












  • $begingroup$
    That answer makes no sense either.
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 12:01












  • $begingroup$
    Okay, let me edit my post then. Just some time!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:02










  • $begingroup$
    @José Carlos Santos: Kindly check, I made some edits. It should be fine now!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:07


















  • $begingroup$
    Your problem makes no sense. What are the $alpha_i$'s?
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 11:58










  • $begingroup$
    @ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:00












  • $begingroup$
    That answer makes no sense either.
    $endgroup$
    – José Carlos Santos
    Dec 26 '18 at 12:01












  • $begingroup$
    Okay, let me edit my post then. Just some time!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:02










  • $begingroup$
    @José Carlos Santos: Kindly check, I made some edits. It should be fine now!
    $endgroup$
    – Omojola Micheal
    Dec 26 '18 at 12:07
















$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58




$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58












$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00






$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00














$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01






$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01














$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02




$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02












$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07




$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07










1 Answer
1






active

oldest

votes


















0












$begingroup$

$a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
$b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and



begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}



$c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,



begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052870%2fprove-that-cdot-0-defined-by-x-0-max-limits-1-leq-i-leq-n-al%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    $a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
    $b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and



    begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}



    $c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,



    begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
      $b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and



      begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}



      $c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,



      begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
        $b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and



        begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}



        $c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,



        begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}






        share|cite|improve this answer









        $endgroup$



        $a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
        $b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and



        begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}



        $c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,



        begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 27 '18 at 14:18









        Omojola MichealOmojola Micheal

        1,853324




        1,853324






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052870%2fprove-that-cdot-0-defined-by-x-0-max-limits-1-leq-i-leq-n-al%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna