Prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.
$begingroup$
Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.
I, therefore, post the proof in the answer section after it has been approved.
linear-algebra functional-analysis norm normed-spaces
$endgroup$
|
show 2 more comments
$begingroup$
Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.
I, therefore, post the proof in the answer section after it has been approved.
linear-algebra functional-analysis norm normed-spaces
$endgroup$
$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58
$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00
$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01
$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02
$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07
|
show 2 more comments
$begingroup$
Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.
I, therefore, post the proof in the answer section after it has been approved.
linear-algebra functional-analysis norm normed-spaces
$endgroup$
Given that $E$ is a finite dimensional space. Let $dim E=ngeq 1$ and ${e_i}^{n}_{i=1}$ be a basis for $E.$ Then, there exists unique scalars ${alpha_i}^{n}_{i=1}$ such that
begin{align}x=sum_{i=1}^{n}alpha_i e_i.end{align}
The problem is: I want to prove that $| cdot |_0$ defined by $| x |_0=maxlimits_{1leq ileq n}|alpha_i|$ is a norm on $E$.
I, therefore, post the proof in the answer section after it has been approved.
linear-algebra functional-analysis norm normed-spaces
linear-algebra functional-analysis norm normed-spaces
edited Dec 27 '18 at 14:18
Omojola Micheal
asked Dec 26 '18 at 11:52
Omojola MichealOmojola Micheal
1,853324
1,853324
$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58
$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00
$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01
$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02
$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07
|
show 2 more comments
$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58
$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00
$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01
$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02
$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07
$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58
$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58
$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00
$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00
$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01
$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01
$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02
$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02
$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07
$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07
|
show 2 more comments
1 Answer
1
active
oldest
votes
$begingroup$
$a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
$b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and
begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}
$c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,
begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052870%2fprove-that-cdot-0-defined-by-x-0-max-limits-1-leq-i-leq-n-al%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
$b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and
begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}
$c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,
begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}
$endgroup$
add a comment |
$begingroup$
$a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
$b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and
begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}
$c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,
begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}
$endgroup$
add a comment |
$begingroup$
$a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
$b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and
begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}
$c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,
begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}
$endgroup$
$a.qquad$ Let $xin E,$ then begin{align}|x|_0=0&iff maxlimits_{1leq ileq n}|alpha_i|=0 iff |alpha_i|=0,,forall ,{1leq ileq n}\&iff alpha_i=0,,forall ,{1leq ileq n}\&iff x=0,;forall;xin Eend{align}
$b.qquad$ Let $lambda in K$, then $lambda x=sum_{i=1}^{n}lambda, alpha_i e_i$ and
begin{align}|lambda x|_0&= maxlimits_{1leq ileq n}|lambda,alpha_i|=|lambda,|maxlimits_{1leq ileq n}|alpha_i|=|lambda,|| x|_0,;forall;xin Eend{align}
$c.qquad$ Let $x,yin E$, then $x=sum_{i=1}^{n}alpha_i e_i$ and $y=sum_{i=1}^{n}beta_i e_i,$ for some $alpha_i,beta_i,;iin{1,2,cdots,n}.$ Thus,
begin{align}| x+y|_0&= maxlimits_{1leq ileq n}|alpha_i+beta_i|leq maxlimits_{1leq ileq n}|alpha_i|+maxlimits_{1leq ileq n}|beta_i|=| x|_0+|y|_0,;forall;x,yin Eend{align}
answered Dec 27 '18 at 14:18
Omojola MichealOmojola Micheal
1,853324
1,853324
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052870%2fprove-that-cdot-0-defined-by-x-0-max-limits-1-leq-i-leq-n-al%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your problem makes no sense. What are the $alpha_i$'s?
$endgroup$
– José Carlos Santos
Dec 26 '18 at 11:58
$begingroup$
@ José Carlos Santos: They are unique scalars such ${e_i}^{n}_{i=1}$ is a basis for $E$.
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:00
$begingroup$
That answer makes no sense either.
$endgroup$
– José Carlos Santos
Dec 26 '18 at 12:01
$begingroup$
Okay, let me edit my post then. Just some time!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:02
$begingroup$
@José Carlos Santos: Kindly check, I made some edits. It should be fine now!
$endgroup$
– Omojola Micheal
Dec 26 '18 at 12:07