Solving Geometric Program
$begingroup$
(Use a Calculator) Use geometric programming to solve the following program:
Minimine: $g(x) = frac{1000}{xy} + 2x + 2y + xy$, $forall x,y > 0$
I am a little confused on how to begin this program, can anyone give me any tips? Thanks!
calculus
$endgroup$
add a comment |
$begingroup$
(Use a Calculator) Use geometric programming to solve the following program:
Minimine: $g(x) = frac{1000}{xy} + 2x + 2y + xy$, $forall x,y > 0$
I am a little confused on how to begin this program, can anyone give me any tips? Thanks!
calculus
$endgroup$
$begingroup$
Should the function be $g(x,y)?$
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:17
$begingroup$
Hmm good point, I'm not sure, I was given g(x).
$endgroup$
– hawk2015
Feb 26 '16 at 0:20
$begingroup$
Without the $forall y$ at the end, it could be that $y$ is a parameter and you are supposed to find the $x$ that minimizes $g(x)$. But with it, I believe you are supposed to find both $x$ and $y$ that make $g(x,y)$ a minimum.
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:23
$begingroup$
@RossMillikan Pretty sure I am supposed to use the AM-GM inequality here.
$endgroup$
– hawk2015
Feb 26 '16 at 0:28
add a comment |
$begingroup$
(Use a Calculator) Use geometric programming to solve the following program:
Minimine: $g(x) = frac{1000}{xy} + 2x + 2y + xy$, $forall x,y > 0$
I am a little confused on how to begin this program, can anyone give me any tips? Thanks!
calculus
$endgroup$
(Use a Calculator) Use geometric programming to solve the following program:
Minimine: $g(x) = frac{1000}{xy} + 2x + 2y + xy$, $forall x,y > 0$
I am a little confused on how to begin this program, can anyone give me any tips? Thanks!
calculus
calculus
edited Feb 26 '16 at 0:15
Ross Millikan
296k23198371
296k23198371
asked Feb 26 '16 at 0:12
hawk2015hawk2015
5917
5917
$begingroup$
Should the function be $g(x,y)?$
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:17
$begingroup$
Hmm good point, I'm not sure, I was given g(x).
$endgroup$
– hawk2015
Feb 26 '16 at 0:20
$begingroup$
Without the $forall y$ at the end, it could be that $y$ is a parameter and you are supposed to find the $x$ that minimizes $g(x)$. But with it, I believe you are supposed to find both $x$ and $y$ that make $g(x,y)$ a minimum.
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:23
$begingroup$
@RossMillikan Pretty sure I am supposed to use the AM-GM inequality here.
$endgroup$
– hawk2015
Feb 26 '16 at 0:28
add a comment |
$begingroup$
Should the function be $g(x,y)?$
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:17
$begingroup$
Hmm good point, I'm not sure, I was given g(x).
$endgroup$
– hawk2015
Feb 26 '16 at 0:20
$begingroup$
Without the $forall y$ at the end, it could be that $y$ is a parameter and you are supposed to find the $x$ that minimizes $g(x)$. But with it, I believe you are supposed to find both $x$ and $y$ that make $g(x,y)$ a minimum.
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:23
$begingroup$
@RossMillikan Pretty sure I am supposed to use the AM-GM inequality here.
$endgroup$
– hawk2015
Feb 26 '16 at 0:28
$begingroup$
Should the function be $g(x,y)?$
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:17
$begingroup$
Should the function be $g(x,y)?$
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:17
$begingroup$
Hmm good point, I'm not sure, I was given g(x).
$endgroup$
– hawk2015
Feb 26 '16 at 0:20
$begingroup$
Hmm good point, I'm not sure, I was given g(x).
$endgroup$
– hawk2015
Feb 26 '16 at 0:20
$begingroup$
Without the $forall y$ at the end, it could be that $y$ is a parameter and you are supposed to find the $x$ that minimizes $g(x)$. But with it, I believe you are supposed to find both $x$ and $y$ that make $g(x,y)$ a minimum.
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:23
$begingroup$
Without the $forall y$ at the end, it could be that $y$ is a parameter and you are supposed to find the $x$ that minimizes $g(x)$. But with it, I believe you are supposed to find both $x$ and $y$ that make $g(x,y)$ a minimum.
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:23
$begingroup$
@RossMillikan Pretty sure I am supposed to use the AM-GM inequality here.
$endgroup$
– hawk2015
Feb 26 '16 at 0:28
$begingroup$
@RossMillikan Pretty sure I am supposed to use the AM-GM inequality here.
$endgroup$
– hawk2015
Feb 26 '16 at 0:28
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
This is exercise 26 from Chapter 2 , Peressini.
Solution is solve Dual geometric Programing: Maximize $$V(delta)=(frac{1000}{delta_1})^{delta_1}(frac{2}{delta_2})^{delta_2}(frac{2}{delta_3})^{delta_3}(frac{1}{delta_4})^{delta_4}$$
Where $delta = (delta_1 ,delta_2 ,delta_3 ,delta_4)$
with the conditions normality and ortogonality
$$ left{ begin{array}{2}
delta_1 +delta_2+delta_3+delta_4 =1 \[2ex]
-delta_1 +delta_2+0delta_3+delta_4 =0 \[3ex]
-delta_1 +0delta_2+delta_3+delta_4 =0end{array} right.
$$
And positivity condition $delta_1>0,delta_2>0,delta_3>0,delta_4>0$
Where the solution set from the system is $$K={(delta_1 ,delta_2 ,delta_3 ,delta_4) / delta_2=delta_3=1-2delta_1 , delta_4 = 3delta_1-1, frac{1}{3}<delta_1<frac{1}{2} }$$
Now Maximize $$f(s)=(frac{1000}{s})^{s}(frac{2}{1-2s})^{1-2s}(frac{2}{1-2s})^{1-2s}(frac{1}{3s-1})^{3s-1}$$ on the interval $1/3<s<1/2$.Taking logs,we maximize
$$ u(s) =ln f(s)=-sln frac{s}{1000}-2(1-2s)ln frac{1-2s}{2}-(3s-1)ln (3s-1)$$
Using Newton Method in $s_0 = 0.4$
$$s^{k+1}=s^k-frac{u'(s^k)}{u''(s^k)}approx s^k-frac{frac{u(s^k)-u(s^k-h)}{h}}{frac{u(s^k+h)-2u(s^k)+u(s^k-h)}{h^2}}$$
with $h = 0.001$ and 100 iterations, $s^*=0.4394 Rightarrow u(s^*)=4.4405$
Then $$f(s^*) =e^{u(s^*)}=84.8197 $$
This is the minimun of $g(mathbf{x})$
$endgroup$
add a comment |
$begingroup$
Without a calculator, I would just use the fact that at the minimum you must have $frac {partial g(x,y)}{partial x}=frac {partial g(x,y)}{partial y}=0$ That will give you two equations in two unknowns. The symmetry indicates that $x=y$ at the minimum (though you should check that).
My graphing calculator, Alpha, finds the minimum to be near $x=y=5.18284$ As it does not offer an exact result, I think you are just supposed to search around to find the minimum.
$endgroup$
add a comment |
$begingroup$
The problem can also be solved numerically using cvxpy's geometric programming capabilities, like so:
#!/usr/bin/env python3
import cvxpy as cp
x = cp.Variable(pos=True)
y = cp.Variable(pos=True)
constraints =
objective = 1000/x/y+2*x+2*y+x*y
prob = cp.Problem(cp.Minimize(objective), constraints)
objval = prob.solve(gp=True)
print("Objective value = {0}".format(objval))
print("x value = {0}".format(x.value))
print("y value = {0}".format(y.value))
As output, this gives:
Objective value = 84.82073466127639
x value = 5.182852109768804
y value = 5.18285210938629
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1672505%2fsolving-geometric-program%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is exercise 26 from Chapter 2 , Peressini.
Solution is solve Dual geometric Programing: Maximize $$V(delta)=(frac{1000}{delta_1})^{delta_1}(frac{2}{delta_2})^{delta_2}(frac{2}{delta_3})^{delta_3}(frac{1}{delta_4})^{delta_4}$$
Where $delta = (delta_1 ,delta_2 ,delta_3 ,delta_4)$
with the conditions normality and ortogonality
$$ left{ begin{array}{2}
delta_1 +delta_2+delta_3+delta_4 =1 \[2ex]
-delta_1 +delta_2+0delta_3+delta_4 =0 \[3ex]
-delta_1 +0delta_2+delta_3+delta_4 =0end{array} right.
$$
And positivity condition $delta_1>0,delta_2>0,delta_3>0,delta_4>0$
Where the solution set from the system is $$K={(delta_1 ,delta_2 ,delta_3 ,delta_4) / delta_2=delta_3=1-2delta_1 , delta_4 = 3delta_1-1, frac{1}{3}<delta_1<frac{1}{2} }$$
Now Maximize $$f(s)=(frac{1000}{s})^{s}(frac{2}{1-2s})^{1-2s}(frac{2}{1-2s})^{1-2s}(frac{1}{3s-1})^{3s-1}$$ on the interval $1/3<s<1/2$.Taking logs,we maximize
$$ u(s) =ln f(s)=-sln frac{s}{1000}-2(1-2s)ln frac{1-2s}{2}-(3s-1)ln (3s-1)$$
Using Newton Method in $s_0 = 0.4$
$$s^{k+1}=s^k-frac{u'(s^k)}{u''(s^k)}approx s^k-frac{frac{u(s^k)-u(s^k-h)}{h}}{frac{u(s^k+h)-2u(s^k)+u(s^k-h)}{h^2}}$$
with $h = 0.001$ and 100 iterations, $s^*=0.4394 Rightarrow u(s^*)=4.4405$
Then $$f(s^*) =e^{u(s^*)}=84.8197 $$
This is the minimun of $g(mathbf{x})$
$endgroup$
add a comment |
$begingroup$
This is exercise 26 from Chapter 2 , Peressini.
Solution is solve Dual geometric Programing: Maximize $$V(delta)=(frac{1000}{delta_1})^{delta_1}(frac{2}{delta_2})^{delta_2}(frac{2}{delta_3})^{delta_3}(frac{1}{delta_4})^{delta_4}$$
Where $delta = (delta_1 ,delta_2 ,delta_3 ,delta_4)$
with the conditions normality and ortogonality
$$ left{ begin{array}{2}
delta_1 +delta_2+delta_3+delta_4 =1 \[2ex]
-delta_1 +delta_2+0delta_3+delta_4 =0 \[3ex]
-delta_1 +0delta_2+delta_3+delta_4 =0end{array} right.
$$
And positivity condition $delta_1>0,delta_2>0,delta_3>0,delta_4>0$
Where the solution set from the system is $$K={(delta_1 ,delta_2 ,delta_3 ,delta_4) / delta_2=delta_3=1-2delta_1 , delta_4 = 3delta_1-1, frac{1}{3}<delta_1<frac{1}{2} }$$
Now Maximize $$f(s)=(frac{1000}{s})^{s}(frac{2}{1-2s})^{1-2s}(frac{2}{1-2s})^{1-2s}(frac{1}{3s-1})^{3s-1}$$ on the interval $1/3<s<1/2$.Taking logs,we maximize
$$ u(s) =ln f(s)=-sln frac{s}{1000}-2(1-2s)ln frac{1-2s}{2}-(3s-1)ln (3s-1)$$
Using Newton Method in $s_0 = 0.4$
$$s^{k+1}=s^k-frac{u'(s^k)}{u''(s^k)}approx s^k-frac{frac{u(s^k)-u(s^k-h)}{h}}{frac{u(s^k+h)-2u(s^k)+u(s^k-h)}{h^2}}$$
with $h = 0.001$ and 100 iterations, $s^*=0.4394 Rightarrow u(s^*)=4.4405$
Then $$f(s^*) =e^{u(s^*)}=84.8197 $$
This is the minimun of $g(mathbf{x})$
$endgroup$
add a comment |
$begingroup$
This is exercise 26 from Chapter 2 , Peressini.
Solution is solve Dual geometric Programing: Maximize $$V(delta)=(frac{1000}{delta_1})^{delta_1}(frac{2}{delta_2})^{delta_2}(frac{2}{delta_3})^{delta_3}(frac{1}{delta_4})^{delta_4}$$
Where $delta = (delta_1 ,delta_2 ,delta_3 ,delta_4)$
with the conditions normality and ortogonality
$$ left{ begin{array}{2}
delta_1 +delta_2+delta_3+delta_4 =1 \[2ex]
-delta_1 +delta_2+0delta_3+delta_4 =0 \[3ex]
-delta_1 +0delta_2+delta_3+delta_4 =0end{array} right.
$$
And positivity condition $delta_1>0,delta_2>0,delta_3>0,delta_4>0$
Where the solution set from the system is $$K={(delta_1 ,delta_2 ,delta_3 ,delta_4) / delta_2=delta_3=1-2delta_1 , delta_4 = 3delta_1-1, frac{1}{3}<delta_1<frac{1}{2} }$$
Now Maximize $$f(s)=(frac{1000}{s})^{s}(frac{2}{1-2s})^{1-2s}(frac{2}{1-2s})^{1-2s}(frac{1}{3s-1})^{3s-1}$$ on the interval $1/3<s<1/2$.Taking logs,we maximize
$$ u(s) =ln f(s)=-sln frac{s}{1000}-2(1-2s)ln frac{1-2s}{2}-(3s-1)ln (3s-1)$$
Using Newton Method in $s_0 = 0.4$
$$s^{k+1}=s^k-frac{u'(s^k)}{u''(s^k)}approx s^k-frac{frac{u(s^k)-u(s^k-h)}{h}}{frac{u(s^k+h)-2u(s^k)+u(s^k-h)}{h^2}}$$
with $h = 0.001$ and 100 iterations, $s^*=0.4394 Rightarrow u(s^*)=4.4405$
Then $$f(s^*) =e^{u(s^*)}=84.8197 $$
This is the minimun of $g(mathbf{x})$
$endgroup$
This is exercise 26 from Chapter 2 , Peressini.
Solution is solve Dual geometric Programing: Maximize $$V(delta)=(frac{1000}{delta_1})^{delta_1}(frac{2}{delta_2})^{delta_2}(frac{2}{delta_3})^{delta_3}(frac{1}{delta_4})^{delta_4}$$
Where $delta = (delta_1 ,delta_2 ,delta_3 ,delta_4)$
with the conditions normality and ortogonality
$$ left{ begin{array}{2}
delta_1 +delta_2+delta_3+delta_4 =1 \[2ex]
-delta_1 +delta_2+0delta_3+delta_4 =0 \[3ex]
-delta_1 +0delta_2+delta_3+delta_4 =0end{array} right.
$$
And positivity condition $delta_1>0,delta_2>0,delta_3>0,delta_4>0$
Where the solution set from the system is $$K={(delta_1 ,delta_2 ,delta_3 ,delta_4) / delta_2=delta_3=1-2delta_1 , delta_4 = 3delta_1-1, frac{1}{3}<delta_1<frac{1}{2} }$$
Now Maximize $$f(s)=(frac{1000}{s})^{s}(frac{2}{1-2s})^{1-2s}(frac{2}{1-2s})^{1-2s}(frac{1}{3s-1})^{3s-1}$$ on the interval $1/3<s<1/2$.Taking logs,we maximize
$$ u(s) =ln f(s)=-sln frac{s}{1000}-2(1-2s)ln frac{1-2s}{2}-(3s-1)ln (3s-1)$$
Using Newton Method in $s_0 = 0.4$
$$s^{k+1}=s^k-frac{u'(s^k)}{u''(s^k)}approx s^k-frac{frac{u(s^k)-u(s^k-h)}{h}}{frac{u(s^k+h)-2u(s^k)+u(s^k-h)}{h^2}}$$
with $h = 0.001$ and 100 iterations, $s^*=0.4394 Rightarrow u(s^*)=4.4405$
Then $$f(s^*) =e^{u(s^*)}=84.8197 $$
This is the minimun of $g(mathbf{x})$
edited Jul 5 '17 at 6:24
answered Jul 3 '17 at 20:47
Brayan CruzBrayan Cruz
265
265
add a comment |
add a comment |
$begingroup$
Without a calculator, I would just use the fact that at the minimum you must have $frac {partial g(x,y)}{partial x}=frac {partial g(x,y)}{partial y}=0$ That will give you two equations in two unknowns. The symmetry indicates that $x=y$ at the minimum (though you should check that).
My graphing calculator, Alpha, finds the minimum to be near $x=y=5.18284$ As it does not offer an exact result, I think you are just supposed to search around to find the minimum.
$endgroup$
add a comment |
$begingroup$
Without a calculator, I would just use the fact that at the minimum you must have $frac {partial g(x,y)}{partial x}=frac {partial g(x,y)}{partial y}=0$ That will give you two equations in two unknowns. The symmetry indicates that $x=y$ at the minimum (though you should check that).
My graphing calculator, Alpha, finds the minimum to be near $x=y=5.18284$ As it does not offer an exact result, I think you are just supposed to search around to find the minimum.
$endgroup$
add a comment |
$begingroup$
Without a calculator, I would just use the fact that at the minimum you must have $frac {partial g(x,y)}{partial x}=frac {partial g(x,y)}{partial y}=0$ That will give you two equations in two unknowns. The symmetry indicates that $x=y$ at the minimum (though you should check that).
My graphing calculator, Alpha, finds the minimum to be near $x=y=5.18284$ As it does not offer an exact result, I think you are just supposed to search around to find the minimum.
$endgroup$
Without a calculator, I would just use the fact that at the minimum you must have $frac {partial g(x,y)}{partial x}=frac {partial g(x,y)}{partial y}=0$ That will give you two equations in two unknowns. The symmetry indicates that $x=y$ at the minimum (though you should check that).
My graphing calculator, Alpha, finds the minimum to be near $x=y=5.18284$ As it does not offer an exact result, I think you are just supposed to search around to find the minimum.
edited Feb 26 '16 at 1:02
answered Feb 26 '16 at 0:17
Ross MillikanRoss Millikan
296k23198371
296k23198371
add a comment |
add a comment |
$begingroup$
The problem can also be solved numerically using cvxpy's geometric programming capabilities, like so:
#!/usr/bin/env python3
import cvxpy as cp
x = cp.Variable(pos=True)
y = cp.Variable(pos=True)
constraints =
objective = 1000/x/y+2*x+2*y+x*y
prob = cp.Problem(cp.Minimize(objective), constraints)
objval = prob.solve(gp=True)
print("Objective value = {0}".format(objval))
print("x value = {0}".format(x.value))
print("y value = {0}".format(y.value))
As output, this gives:
Objective value = 84.82073466127639
x value = 5.182852109768804
y value = 5.18285210938629
$endgroup$
add a comment |
$begingroup$
The problem can also be solved numerically using cvxpy's geometric programming capabilities, like so:
#!/usr/bin/env python3
import cvxpy as cp
x = cp.Variable(pos=True)
y = cp.Variable(pos=True)
constraints =
objective = 1000/x/y+2*x+2*y+x*y
prob = cp.Problem(cp.Minimize(objective), constraints)
objval = prob.solve(gp=True)
print("Objective value = {0}".format(objval))
print("x value = {0}".format(x.value))
print("y value = {0}".format(y.value))
As output, this gives:
Objective value = 84.82073466127639
x value = 5.182852109768804
y value = 5.18285210938629
$endgroup$
add a comment |
$begingroup$
The problem can also be solved numerically using cvxpy's geometric programming capabilities, like so:
#!/usr/bin/env python3
import cvxpy as cp
x = cp.Variable(pos=True)
y = cp.Variable(pos=True)
constraints =
objective = 1000/x/y+2*x+2*y+x*y
prob = cp.Problem(cp.Minimize(objective), constraints)
objval = prob.solve(gp=True)
print("Objective value = {0}".format(objval))
print("x value = {0}".format(x.value))
print("y value = {0}".format(y.value))
As output, this gives:
Objective value = 84.82073466127639
x value = 5.182852109768804
y value = 5.18285210938629
$endgroup$
The problem can also be solved numerically using cvxpy's geometric programming capabilities, like so:
#!/usr/bin/env python3
import cvxpy as cp
x = cp.Variable(pos=True)
y = cp.Variable(pos=True)
constraints =
objective = 1000/x/y+2*x+2*y+x*y
prob = cp.Problem(cp.Minimize(objective), constraints)
objval = prob.solve(gp=True)
print("Objective value = {0}".format(objval))
print("x value = {0}".format(x.value))
print("y value = {0}".format(y.value))
As output, this gives:
Objective value = 84.82073466127639
x value = 5.182852109768804
y value = 5.18285210938629
answered Dec 26 '18 at 8:47
RichardRichard
246110
246110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1672505%2fsolving-geometric-program%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Should the function be $g(x,y)?$
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:17
$begingroup$
Hmm good point, I'm not sure, I was given g(x).
$endgroup$
– hawk2015
Feb 26 '16 at 0:20
$begingroup$
Without the $forall y$ at the end, it could be that $y$ is a parameter and you are supposed to find the $x$ that minimizes $g(x)$. But with it, I believe you are supposed to find both $x$ and $y$ that make $g(x,y)$ a minimum.
$endgroup$
– Ross Millikan
Feb 26 '16 at 0:23
$begingroup$
@RossMillikan Pretty sure I am supposed to use the AM-GM inequality here.
$endgroup$
– hawk2015
Feb 26 '16 at 0:28