Why do $4cdot 2^nsinfrac{45}{2^n}$, $2cdot 2^nsinfrac{90}{2^n}$, and $1cdot 2^nsinfrac{180}{2^n}$ all tend to...












0












$begingroup$


I am not sure what question or inquiries to ask actually, but I just think this is really awesome




Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?




Please Sign here and Sin here XD










share|cite|improve this question











$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/3056784/…
    $endgroup$
    – lab bhattacharjee
    Dec 30 '18 at 15:53
















0












$begingroup$


I am not sure what question or inquiries to ask actually, but I just think this is really awesome




Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?




Please Sign here and Sin here XD










share|cite|improve this question











$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/3056784/…
    $endgroup$
    – lab bhattacharjee
    Dec 30 '18 at 15:53














0












0








0





$begingroup$


I am not sure what question or inquiries to ask actually, but I just think this is really awesome




Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?




Please Sign here and Sin here XD










share|cite|improve this question











$endgroup$




I am not sure what question or inquiries to ask actually, but I just think this is really awesome




Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?




Please Sign here and Sin here XD







sequences-and-series trigonometry pi






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 30 '18 at 15:18









Blue

48.6k870156




48.6k870156










asked Dec 30 '18 at 15:09







user630471



















  • $begingroup$
    math.stackexchange.com/questions/3056784/…
    $endgroup$
    – lab bhattacharjee
    Dec 30 '18 at 15:53


















  • $begingroup$
    math.stackexchange.com/questions/3056784/…
    $endgroup$
    – lab bhattacharjee
    Dec 30 '18 at 15:53
















$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53




$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53










2 Answers
2






active

oldest

votes


















2












$begingroup$

Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    (+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
    $endgroup$
    – Yanko
    Dec 30 '18 at 15:18





















2












$begingroup$

This is due to $lim_{h to 0}frac{sin h}h = 1$.



Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}



Similarly for the other sequences.



That is we have



$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks again Siong! :D
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16










  • $begingroup$
    so does this work for other series as well?
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16








  • 1




    $begingroup$
    nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
    $endgroup$
    – The_Sympathizer
    Dec 30 '18 at 15:17












  • $begingroup$
    oops, thanks for pointing out the typo.
    $endgroup$
    – Siong Thye Goh
    Dec 30 '18 at 15:19











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056908%2fwhy-do-4-cdot-2n-sin-frac452n-2-cdot-2n-sin-frac902n-and-1-cd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown
























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    (+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
    $endgroup$
    – Yanko
    Dec 30 '18 at 15:18


















2












$begingroup$

Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    (+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
    $endgroup$
    – Yanko
    Dec 30 '18 at 15:18
















2












2








2





$begingroup$

Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.






share|cite|improve this answer









$endgroup$



Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 30 '18 at 15:14









Ross MillikanRoss Millikan

297k23198371




297k23198371








  • 1




    $begingroup$
    (+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
    $endgroup$
    – Yanko
    Dec 30 '18 at 15:18
















  • 1




    $begingroup$
    (+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
    $endgroup$
    – Yanko
    Dec 30 '18 at 15:18










1




1




$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18






$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18













2












$begingroup$

This is due to $lim_{h to 0}frac{sin h}h = 1$.



Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}



Similarly for the other sequences.



That is we have



$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks again Siong! :D
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16










  • $begingroup$
    so does this work for other series as well?
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16








  • 1




    $begingroup$
    nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
    $endgroup$
    – The_Sympathizer
    Dec 30 '18 at 15:17












  • $begingroup$
    oops, thanks for pointing out the typo.
    $endgroup$
    – Siong Thye Goh
    Dec 30 '18 at 15:19
















2












$begingroup$

This is due to $lim_{h to 0}frac{sin h}h = 1$.



Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}



Similarly for the other sequences.



That is we have



$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks again Siong! :D
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16










  • $begingroup$
    so does this work for other series as well?
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16








  • 1




    $begingroup$
    nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
    $endgroup$
    – The_Sympathizer
    Dec 30 '18 at 15:17












  • $begingroup$
    oops, thanks for pointing out the typo.
    $endgroup$
    – Siong Thye Goh
    Dec 30 '18 at 15:19














2












2








2





$begingroup$

This is due to $lim_{h to 0}frac{sin h}h = 1$.



Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}



Similarly for the other sequences.



That is we have



$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$






share|cite|improve this answer











$endgroup$



This is due to $lim_{h to 0}frac{sin h}h = 1$.



Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}



Similarly for the other sequences.



That is we have



$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 30 '18 at 15:18

























answered Dec 30 '18 at 15:16









Siong Thye GohSiong Thye Goh

102k1466118




102k1466118












  • $begingroup$
    Thanks again Siong! :D
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16










  • $begingroup$
    so does this work for other series as well?
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16








  • 1




    $begingroup$
    nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
    $endgroup$
    – The_Sympathizer
    Dec 30 '18 at 15:17












  • $begingroup$
    oops, thanks for pointing out the typo.
    $endgroup$
    – Siong Thye Goh
    Dec 30 '18 at 15:19


















  • $begingroup$
    Thanks again Siong! :D
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16










  • $begingroup$
    so does this work for other series as well?
    $endgroup$
    – user630471
    Dec 30 '18 at 15:16








  • 1




    $begingroup$
    nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
    $endgroup$
    – The_Sympathizer
    Dec 30 '18 at 15:17












  • $begingroup$
    oops, thanks for pointing out the typo.
    $endgroup$
    – Siong Thye Goh
    Dec 30 '18 at 15:19
















$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16




$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16












$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16






$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16






1




1




$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17






$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17














$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19




$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056908%2fwhy-do-4-cdot-2n-sin-frac452n-2-cdot-2n-sin-frac902n-and-1-cd%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna