Why do $4cdot 2^nsinfrac{45}{2^n}$, $2cdot 2^nsinfrac{90}{2^n}$, and $1cdot 2^nsinfrac{180}{2^n}$ all tend to...
$begingroup$
I am not sure what question or inquiries to ask actually, but I just think this is really awesome
Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?
sequences-and-series trigonometry pi
$endgroup$
add a comment |
$begingroup$
I am not sure what question or inquiries to ask actually, but I just think this is really awesome
Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?
sequences-and-series trigonometry pi
$endgroup$
$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53
add a comment |
$begingroup$
I am not sure what question or inquiries to ask actually, but I just think this is really awesome
Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?
sequences-and-series trigonometry pi
$endgroup$
I am not sure what question or inquiries to ask actually, but I just think this is really awesome
Can someone explain to me why the graphs of
$$4cdot 2^nsinfrac{45}{2^n}, qquad 2cdot 2^nsinfrac{90}{2^n}, qquadtext{and}qquad 1cdot 2^nsinfrac{180}{2^n}$$
all tend to $pi$?
sequences-and-series trigonometry pi
sequences-and-series trigonometry pi
edited Dec 30 '18 at 15:18
Blue
48.6k870156
48.6k870156
asked Dec 30 '18 at 15:09
user630471
$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53
add a comment |
$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53
$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53
$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.
$endgroup$
1
$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18
add a comment |
$begingroup$
This is due to $lim_{h to 0}frac{sin h}h = 1$.
Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}
Similarly for the other sequences.
That is we have
$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$
$endgroup$
$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16
1
$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17
$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056908%2fwhy-do-4-cdot-2n-sin-frac452n-2-cdot-2n-sin-frac902n-and-1-cd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.
$endgroup$
1
$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18
add a comment |
$begingroup$
Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.
$endgroup$
1
$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18
add a comment |
$begingroup$
Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.
$endgroup$
Because $sin x approx x$ when $x$ is small and measured in radians. When $x$ is measured in degrees $sin x approx frac {pi x}{180}.$ When $n$ gets large the argument of $sin$ becomes small.
answered Dec 30 '18 at 15:14
Ross MillikanRoss Millikan
297k23198371
297k23198371
1
$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18
add a comment |
1
$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18
1
1
$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18
$begingroup$
(+1) Just to clarify, saying that $sin x approx x$ when $x$ is small is an informal way for saying that $lim_{xrightarrow 0} frac{sin x}{x} = 1$.
$endgroup$
– Yanko
Dec 30 '18 at 15:18
add a comment |
$begingroup$
This is due to $lim_{h to 0}frac{sin h}h = 1$.
Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}
Similarly for the other sequences.
That is we have
$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$
$endgroup$
$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16
1
$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17
$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19
add a comment |
$begingroup$
This is due to $lim_{h to 0}frac{sin h}h = 1$.
Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}
Similarly for the other sequences.
That is we have
$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$
$endgroup$
$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16
1
$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17
$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19
add a comment |
$begingroup$
This is due to $lim_{h to 0}frac{sin h}h = 1$.
Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}
Similarly for the other sequences.
That is we have
$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$
$endgroup$
This is due to $lim_{h to 0}frac{sin h}h = 1$.
Hence begin{align}lim_{n to infty}4 cdot 2^n cdot sinleft(frac{45^circ}{2^n}right)&=lim_{n to infty}4 cdot 2^n cdot sinleft(frac{pi}{2^{n+2}}right) \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&=lim_{n to infty}4 cdot 2^n cdot frac{pi}{2^{n+2}}cdot lim_{n to infty}frac{sinleft(frac{pi}{2^{n+2}}right)}{frac{pi}{2^{n+2}}} \
&= pi cdot 1\
&= piend{align}
Similarly for the other sequences.
That is we have
$$lim_{n to infty}w cdot 2^n cdot sin left( frac{180^circ}{wcdot 2^n}right)=pi$$
edited Dec 30 '18 at 15:18
answered Dec 30 '18 at 15:16
Siong Thye GohSiong Thye Goh
102k1466118
102k1466118
$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16
1
$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17
$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19
add a comment |
$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16
1
$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17
$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19
$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
Thanks again Siong! :D
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16
$begingroup$
so does this work for other series as well?
$endgroup$
– user630471
Dec 30 '18 at 15:16
1
1
$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17
$begingroup$
nb: $lim_{h rightarrow 0} frac{sin(h)}{h} = 1$, not 0.
$endgroup$
– The_Sympathizer
Dec 30 '18 at 15:17
$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19
$begingroup$
oops, thanks for pointing out the typo.
$endgroup$
– Siong Thye Goh
Dec 30 '18 at 15:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056908%2fwhy-do-4-cdot-2n-sin-frac452n-2-cdot-2n-sin-frac902n-and-1-cd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/3056784/…
$endgroup$
– lab bhattacharjee
Dec 30 '18 at 15:53