Check convergence /divergence of a series $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{1}{4}}(frac{1}{sqrt{4n-1}}-...












1












$begingroup$



for $(a)$ and $(b)$ decide if the series converges , converges conditionally or diverge




$(a)$ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{1}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



$(b) $ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{5}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



i tried to use Leibniz test for $(a)$ and $(b)$ but failed.
i tried to do assymptotic tests but failed.



also i am not sure how to decide if the sequence monotonically decreasing










share|cite|improve this question











$endgroup$












  • $begingroup$
    First series is absolutely convergent. Compare with $sum frac 1 {n^{5/4}}$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 1 at 9:14












  • $begingroup$
    but i can't compare since its not positive series
    $endgroup$
    – Mather
    Jan 1 at 9:16










  • $begingroup$
    i know i tried with the absolute values but the lim is $ infty - infty $ how to calculate it i am trying lophital too
    $endgroup$
    – Mather
    Jan 1 at 9:26










  • $begingroup$
    devide by $frac{1}{ n^{ frac{5}{4} } }$ the lim is unclear
    $endgroup$
    – Mather
    Jan 1 at 9:29










  • $begingroup$
    For (a), Sum is equal to integral: $frac{int_0^{infty } frac{-1+, _1F_1left(frac{1}{2};frac{1}{4};frac{x}{4}right)}{left(1+e^xright) x^{3/4}} , dx}{2 Gamma left(frac{1}{4}right)}approx 0.0585087$
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 10:01


















1












$begingroup$



for $(a)$ and $(b)$ decide if the series converges , converges conditionally or diverge




$(a)$ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{1}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



$(b) $ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{5}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



i tried to use Leibniz test for $(a)$ and $(b)$ but failed.
i tried to do assymptotic tests but failed.



also i am not sure how to decide if the sequence monotonically decreasing










share|cite|improve this question











$endgroup$












  • $begingroup$
    First series is absolutely convergent. Compare with $sum frac 1 {n^{5/4}}$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 1 at 9:14












  • $begingroup$
    but i can't compare since its not positive series
    $endgroup$
    – Mather
    Jan 1 at 9:16










  • $begingroup$
    i know i tried with the absolute values but the lim is $ infty - infty $ how to calculate it i am trying lophital too
    $endgroup$
    – Mather
    Jan 1 at 9:26










  • $begingroup$
    devide by $frac{1}{ n^{ frac{5}{4} } }$ the lim is unclear
    $endgroup$
    – Mather
    Jan 1 at 9:29










  • $begingroup$
    For (a), Sum is equal to integral: $frac{int_0^{infty } frac{-1+, _1F_1left(frac{1}{2};frac{1}{4};frac{x}{4}right)}{left(1+e^xright) x^{3/4}} , dx}{2 Gamma left(frac{1}{4}right)}approx 0.0585087$
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 10:01
















1












1








1





$begingroup$



for $(a)$ and $(b)$ decide if the series converges , converges conditionally or diverge




$(a)$ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{1}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



$(b) $ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{5}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



i tried to use Leibniz test for $(a)$ and $(b)$ but failed.
i tried to do assymptotic tests but failed.



also i am not sure how to decide if the sequence monotonically decreasing










share|cite|improve this question











$endgroup$





for $(a)$ and $(b)$ decide if the series converges , converges conditionally or diverge




$(a)$ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{1}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



$(b) $ $sum_{n=1}^{infty} (-1)^{n+1}(n)^{frac{5}{4}}(frac{1}{sqrt{4n-1}}- frac{1}{sqrt{4n}} )$



i tried to use Leibniz test for $(a)$ and $(b)$ but failed.
i tried to do assymptotic tests but failed.



also i am not sure how to decide if the sequence monotonically decreasing







sequences-and-series limits convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 9:55









user376343

3,9033829




3,9033829










asked Jan 1 at 9:06









Mather Mather

3418




3418












  • $begingroup$
    First series is absolutely convergent. Compare with $sum frac 1 {n^{5/4}}$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 1 at 9:14












  • $begingroup$
    but i can't compare since its not positive series
    $endgroup$
    – Mather
    Jan 1 at 9:16










  • $begingroup$
    i know i tried with the absolute values but the lim is $ infty - infty $ how to calculate it i am trying lophital too
    $endgroup$
    – Mather
    Jan 1 at 9:26










  • $begingroup$
    devide by $frac{1}{ n^{ frac{5}{4} } }$ the lim is unclear
    $endgroup$
    – Mather
    Jan 1 at 9:29










  • $begingroup$
    For (a), Sum is equal to integral: $frac{int_0^{infty } frac{-1+, _1F_1left(frac{1}{2};frac{1}{4};frac{x}{4}right)}{left(1+e^xright) x^{3/4}} , dx}{2 Gamma left(frac{1}{4}right)}approx 0.0585087$
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 10:01




















  • $begingroup$
    First series is absolutely convergent. Compare with $sum frac 1 {n^{5/4}}$.
    $endgroup$
    – Kavi Rama Murthy
    Jan 1 at 9:14












  • $begingroup$
    but i can't compare since its not positive series
    $endgroup$
    – Mather
    Jan 1 at 9:16










  • $begingroup$
    i know i tried with the absolute values but the lim is $ infty - infty $ how to calculate it i am trying lophital too
    $endgroup$
    – Mather
    Jan 1 at 9:26










  • $begingroup$
    devide by $frac{1}{ n^{ frac{5}{4} } }$ the lim is unclear
    $endgroup$
    – Mather
    Jan 1 at 9:29










  • $begingroup$
    For (a), Sum is equal to integral: $frac{int_0^{infty } frac{-1+, _1F_1left(frac{1}{2};frac{1}{4};frac{x}{4}right)}{left(1+e^xright) x^{3/4}} , dx}{2 Gamma left(frac{1}{4}right)}approx 0.0585087$
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 10:01


















$begingroup$
First series is absolutely convergent. Compare with $sum frac 1 {n^{5/4}}$.
$endgroup$
– Kavi Rama Murthy
Jan 1 at 9:14






$begingroup$
First series is absolutely convergent. Compare with $sum frac 1 {n^{5/4}}$.
$endgroup$
– Kavi Rama Murthy
Jan 1 at 9:14














$begingroup$
but i can't compare since its not positive series
$endgroup$
– Mather
Jan 1 at 9:16




$begingroup$
but i can't compare since its not positive series
$endgroup$
– Mather
Jan 1 at 9:16












$begingroup$
i know i tried with the absolute values but the lim is $ infty - infty $ how to calculate it i am trying lophital too
$endgroup$
– Mather
Jan 1 at 9:26




$begingroup$
i know i tried with the absolute values but the lim is $ infty - infty $ how to calculate it i am trying lophital too
$endgroup$
– Mather
Jan 1 at 9:26












$begingroup$
devide by $frac{1}{ n^{ frac{5}{4} } }$ the lim is unclear
$endgroup$
– Mather
Jan 1 at 9:29




$begingroup$
devide by $frac{1}{ n^{ frac{5}{4} } }$ the lim is unclear
$endgroup$
– Mather
Jan 1 at 9:29












$begingroup$
For (a), Sum is equal to integral: $frac{int_0^{infty } frac{-1+, _1F_1left(frac{1}{2};frac{1}{4};frac{x}{4}right)}{left(1+e^xright) x^{3/4}} , dx}{2 Gamma left(frac{1}{4}right)}approx 0.0585087$
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 10:01






$begingroup$
For (a), Sum is equal to integral: $frac{int_0^{infty } frac{-1+, _1F_1left(frac{1}{2};frac{1}{4};frac{x}{4}right)}{left(1+e^xright) x^{3/4}} , dx}{2 Gamma left(frac{1}{4}right)}approx 0.0585087$
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 10:01












1 Answer
1






active

oldest

votes


















2












$begingroup$

Answer to first series: $frac 1 {sqrt {(4n-1)}}- frac 1 {sqrt {4n}} =frac {sqrt {4n}-sqrt {4n-1}} {sqrt {4n-1} sqrt {4n}}$. Write this as $frac 1 {sqrt {4n-1} sqrt {4n}(sqrt {4n}+sqrt {4n-1})}$. Note that the denominator is of the order of $n^{3/2}$. Apply comparison test now (Note that $frac 3 2-frac 1 4=frac 5 4 >1)$. Hence the first series is absolutely convergent. A similar argument shows that the second series is not absolutely convergent. Try to prove its convergence using Alternating Series Test.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you sir , much clear now
    $endgroup$
    – Mather
    Jan 1 at 9:54











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058304%2fcheck-convergence-divergence-of-a-series-sum-n-1-infty-1n1n-f%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Answer to first series: $frac 1 {sqrt {(4n-1)}}- frac 1 {sqrt {4n}} =frac {sqrt {4n}-sqrt {4n-1}} {sqrt {4n-1} sqrt {4n}}$. Write this as $frac 1 {sqrt {4n-1} sqrt {4n}(sqrt {4n}+sqrt {4n-1})}$. Note that the denominator is of the order of $n^{3/2}$. Apply comparison test now (Note that $frac 3 2-frac 1 4=frac 5 4 >1)$. Hence the first series is absolutely convergent. A similar argument shows that the second series is not absolutely convergent. Try to prove its convergence using Alternating Series Test.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you sir , much clear now
    $endgroup$
    – Mather
    Jan 1 at 9:54
















2












$begingroup$

Answer to first series: $frac 1 {sqrt {(4n-1)}}- frac 1 {sqrt {4n}} =frac {sqrt {4n}-sqrt {4n-1}} {sqrt {4n-1} sqrt {4n}}$. Write this as $frac 1 {sqrt {4n-1} sqrt {4n}(sqrt {4n}+sqrt {4n-1})}$. Note that the denominator is of the order of $n^{3/2}$. Apply comparison test now (Note that $frac 3 2-frac 1 4=frac 5 4 >1)$. Hence the first series is absolutely convergent. A similar argument shows that the second series is not absolutely convergent. Try to prove its convergence using Alternating Series Test.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thank you sir , much clear now
    $endgroup$
    – Mather
    Jan 1 at 9:54














2












2








2





$begingroup$

Answer to first series: $frac 1 {sqrt {(4n-1)}}- frac 1 {sqrt {4n}} =frac {sqrt {4n}-sqrt {4n-1}} {sqrt {4n-1} sqrt {4n}}$. Write this as $frac 1 {sqrt {4n-1} sqrt {4n}(sqrt {4n}+sqrt {4n-1})}$. Note that the denominator is of the order of $n^{3/2}$. Apply comparison test now (Note that $frac 3 2-frac 1 4=frac 5 4 >1)$. Hence the first series is absolutely convergent. A similar argument shows that the second series is not absolutely convergent. Try to prove its convergence using Alternating Series Test.






share|cite|improve this answer









$endgroup$



Answer to first series: $frac 1 {sqrt {(4n-1)}}- frac 1 {sqrt {4n}} =frac {sqrt {4n}-sqrt {4n-1}} {sqrt {4n-1} sqrt {4n}}$. Write this as $frac 1 {sqrt {4n-1} sqrt {4n}(sqrt {4n}+sqrt {4n-1})}$. Note that the denominator is of the order of $n^{3/2}$. Apply comparison test now (Note that $frac 3 2-frac 1 4=frac 5 4 >1)$. Hence the first series is absolutely convergent. A similar argument shows that the second series is not absolutely convergent. Try to prove its convergence using Alternating Series Test.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 1 at 9:35









Kavi Rama MurthyKavi Rama Murthy

63.9k42464




63.9k42464












  • $begingroup$
    thank you sir , much clear now
    $endgroup$
    – Mather
    Jan 1 at 9:54


















  • $begingroup$
    thank you sir , much clear now
    $endgroup$
    – Mather
    Jan 1 at 9:54
















$begingroup$
thank you sir , much clear now
$endgroup$
– Mather
Jan 1 at 9:54




$begingroup$
thank you sir , much clear now
$endgroup$
– Mather
Jan 1 at 9:54


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058304%2fcheck-convergence-divergence-of-a-series-sum-n-1-infty-1n1n-f%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna