Prove $sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$ [duplicate]
$begingroup$
This question already has an answer here:
Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$
5 answers
I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.
real-analysis sequences-and-series
$endgroup$
marked as duplicate by Jack D'Aurizio
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$
5 answers
I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.
real-analysis sequences-and-series
$endgroup$
marked as duplicate by Jack D'Aurizio
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04
$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07
add a comment |
$begingroup$
This question already has an answer here:
Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$
5 answers
I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.
real-analysis sequences-and-series
$endgroup$
This question already has an answer here:
Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$
5 answers
I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.
This question already has an answer here:
Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$
5 answers
real-analysis sequences-and-series
real-analysis sequences-and-series
asked Jan 1 at 8:47
clathratusclathratus
4,730337
4,730337
marked as duplicate by Jack D'Aurizio
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Jack D'Aurizio
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04
$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07
add a comment |
1
$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04
$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07
1
1
$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04
$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04
$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07
$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The formula
$$
e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
$$ is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
$$
frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
$$ and hence
$$
S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
$$as desired.
$endgroup$
add a comment |
$begingroup$
Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
$$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
Now from two identities of the digamma function,
begin{align}
psi(1-z)-psi(z)&=picot(pi x) \
psi(1+z)-psi(z)&=frac{1}{z} \
end{align}
We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$
$endgroup$
$begingroup$
Neat! Thanks for the answer
$endgroup$
– clathratus
Jan 1 at 10:04
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The formula
$$
e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
$$ is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
$$
frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
$$ and hence
$$
S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
$$as desired.
$endgroup$
add a comment |
$begingroup$
The formula
$$
e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
$$ is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
$$
frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
$$ and hence
$$
S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
$$as desired.
$endgroup$
add a comment |
$begingroup$
The formula
$$
e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
$$ is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
$$
frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
$$ and hence
$$
S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
$$as desired.
$endgroup$
The formula
$$
e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
$$ is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
$$
frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
$$ and hence
$$
S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
$$as desired.
answered Jan 1 at 9:06
SongSong
16.2k1739
16.2k1739
add a comment |
add a comment |
$begingroup$
Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
$$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
Now from two identities of the digamma function,
begin{align}
psi(1-z)-psi(z)&=picot(pi x) \
psi(1+z)-psi(z)&=frac{1}{z} \
end{align}
We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$
$endgroup$
$begingroup$
Neat! Thanks for the answer
$endgroup$
– clathratus
Jan 1 at 10:04
add a comment |
$begingroup$
Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
$$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
Now from two identities of the digamma function,
begin{align}
psi(1-z)-psi(z)&=picot(pi x) \
psi(1+z)-psi(z)&=frac{1}{z} \
end{align}
We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$
$endgroup$
$begingroup$
Neat! Thanks for the answer
$endgroup$
– clathratus
Jan 1 at 10:04
add a comment |
$begingroup$
Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
$$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
Now from two identities of the digamma function,
begin{align}
psi(1-z)-psi(z)&=picot(pi x) \
psi(1+z)-psi(z)&=frac{1}{z} \
end{align}
We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$
$endgroup$
Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
$$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
Now from two identities of the digamma function,
begin{align}
psi(1-z)-psi(z)&=picot(pi x) \
psi(1+z)-psi(z)&=frac{1}{z} \
end{align}
We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$
edited Jan 1 at 20:09
answered Jan 1 at 10:02
ZacharyZachary
2,3701214
2,3701214
$begingroup$
Neat! Thanks for the answer
$endgroup$
– clathratus
Jan 1 at 10:04
add a comment |
$begingroup$
Neat! Thanks for the answer
$endgroup$
– clathratus
Jan 1 at 10:04
$begingroup$
Neat! Thanks for the answer
$endgroup$
– clathratus
Jan 1 at 10:04
$begingroup$
Neat! Thanks for the answer
$endgroup$
– clathratus
Jan 1 at 10:04
add a comment |
1
$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04
$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07