Prove $sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$ [duplicate]












1












$begingroup$



This question already has an answer here:




  • Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$

    5 answers




I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.










share|cite|improve this question









$endgroup$



marked as duplicate by Jack D'Aurizio real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
    $endgroup$
    – Martin R
    Jan 1 at 9:04










  • $begingroup$
    Also: math.stackexchange.com/questions/1714921/….
    $endgroup$
    – Martin R
    Jan 1 at 9:07
















1












$begingroup$



This question already has an answer here:




  • Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$

    5 answers




I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.










share|cite|improve this question









$endgroup$



marked as duplicate by Jack D'Aurizio real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 1




    $begingroup$
    See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
    $endgroup$
    – Martin R
    Jan 1 at 9:04










  • $begingroup$
    Also: math.stackexchange.com/questions/1714921/….
    $endgroup$
    – Martin R
    Jan 1 at 9:07














1












1








1





$begingroup$



This question already has an answer here:




  • Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$

    5 answers




I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.










share|cite|improve this question









$endgroup$





This question already has an answer here:




  • Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$

    5 answers




I am trying to prove
$$sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2$$
Letting $$S=sum_{ngeq1}frac1{n^2+1}$$
we recall the Fourier series for the exponential function
$$e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)$$
Plugging in $x=pi$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos npi-nsin npi)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}((-1)^n-ncdot0)$$
$$e^pi=frac{sinhpi}pi+frac{2sinhpi}pi S$$
$$S=frac{pi e^pi}{2sinhpi}-frac12$$
But that is nowhere near to correct. What did I do wrong, and how do can I prove the identity? Thanks.





This question already has an answer here:




  • Show $sum_{n=0}^inftyfrac{1}{a^2+n^2}=frac{1+apicoth api}{2a^2}$

    5 answers








real-analysis sequences-and-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 1 at 8:47









clathratusclathratus

4,730337




4,730337




marked as duplicate by Jack D'Aurizio real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Jack D'Aurizio real-analysis
Users with the  real-analysis badge can single-handedly close real-analysis questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 1 at 20:25


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    $begingroup$
    See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
    $endgroup$
    – Martin R
    Jan 1 at 9:04










  • $begingroup$
    Also: math.stackexchange.com/questions/1714921/….
    $endgroup$
    – Martin R
    Jan 1 at 9:07














  • 1




    $begingroup$
    See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
    $endgroup$
    – Martin R
    Jan 1 at 9:04










  • $begingroup$
    Also: math.stackexchange.com/questions/1714921/….
    $endgroup$
    – Martin R
    Jan 1 at 9:07








1




1




$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04




$begingroup$
See math.stackexchange.com/questions/680825/… for a proof based on complex analysis.
$endgroup$
– Martin R
Jan 1 at 9:04












$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07




$begingroup$
Also: math.stackexchange.com/questions/1714921/….
$endgroup$
– Martin R
Jan 1 at 9:07










2 Answers
2






active

oldest

votes


















2












$begingroup$

The formula
$$
e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
$$
is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
$$
frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
$$
and hence
$$
S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
$$
as desired.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
    $$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
    Now from two identities of the digamma function,
    begin{align}
    psi(1-z)-psi(z)&=picot(pi x) \
    psi(1+z)-psi(z)&=frac{1}{z} \
    end{align}

    We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Neat! Thanks for the answer
      $endgroup$
      – clathratus
      Jan 1 at 10:04




















    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The formula
    $$
    e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
    $$
    is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
    $$
    frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
    $$
    and hence
    $$
    S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
    $$
    as desired.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      The formula
      $$
      e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
      $$
      is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
      $$
      frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
      $$
      and hence
      $$
      S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
      $$
      as desired.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        The formula
        $$
        e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
        $$
        is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
        $$
        frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
        $$
        and hence
        $$
        S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
        $$
        as desired.






        share|cite|improve this answer









        $endgroup$



        The formula
        $$
        e^x=frac{sinhpi}pi+frac{2sinhpi}pisum_{ngeq1}frac{(-1)^n}{n^2+1}(cos nx-nsin nx)
        $$
        is valid only for $|x|<pi$ since $e^x$ is regarded as $2pi$-periodic function extended from $(-pi, pi).$ Since $2pi$-periodic function $xmapsto e^x$ is of bounded variation, its Fourier series converges to the mean of its left and right limit at every point. So if you evaluate the RHS at $x=pi$, then you get
        $$
        frac{e^{pi}+e^{-pi}}{2} = coshpi = frac{sinhpi}pi+frac{2sinhpi}pi S,
        $$
        and hence
        $$
        S = sum_{ngeq1}frac1{n^2+1}=frac{picothpi-1}2,
        $$
        as desired.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 1 at 9:06









        SongSong

        16.2k1739




        16.2k1739























            2












            $begingroup$

            Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
            $$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
            Now from two identities of the digamma function,
            begin{align}
            psi(1-z)-psi(z)&=picot(pi x) \
            psi(1+z)-psi(z)&=frac{1}{z} \
            end{align}

            We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Neat! Thanks for the answer
              $endgroup$
              – clathratus
              Jan 1 at 10:04


















            2












            $begingroup$

            Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
            $$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
            Now from two identities of the digamma function,
            begin{align}
            psi(1-z)-psi(z)&=picot(pi x) \
            psi(1+z)-psi(z)&=frac{1}{z} \
            end{align}

            We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Neat! Thanks for the answer
              $endgroup$
              – clathratus
              Jan 1 at 10:04
















            2












            2








            2





            $begingroup$

            Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
            $$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
            Now from two identities of the digamma function,
            begin{align}
            psi(1-z)-psi(z)&=picot(pi x) \
            psi(1+z)-psi(z)&=frac{1}{z} \
            end{align}

            We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$






            share|cite|improve this answer











            $endgroup$



            Recalling that $frac{psi(z)-psi(s)}{z-s}=sum_{nge 0} frac{1}{(n+z)(n+s)}$, your sum is equal to
            $$sum_{nge 1} frac{1}{n^2+1}=frac{psi(i)-psi(-i)}{2i}-1$$
            Now from two identities of the digamma function,
            begin{align}
            psi(1-z)-psi(z)&=picot(pi x) \
            psi(1+z)-psi(z)&=frac{1}{z} \
            end{align}

            We may find that $psi(i)-psi(-i)=-frac{1}{i}-picot(pi i)$. Thus, we can conclude that$$sum_{nge 1} frac{1}{n^2+1}=frac{pi}{2}coth(pi)-frac{1}{2}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 1 at 20:09

























            answered Jan 1 at 10:02









            ZacharyZachary

            2,3701214




            2,3701214












            • $begingroup$
              Neat! Thanks for the answer
              $endgroup$
              – clathratus
              Jan 1 at 10:04




















            • $begingroup$
              Neat! Thanks for the answer
              $endgroup$
              – clathratus
              Jan 1 at 10:04


















            $begingroup$
            Neat! Thanks for the answer
            $endgroup$
            – clathratus
            Jan 1 at 10:04






            $begingroup$
            Neat! Thanks for the answer
            $endgroup$
            – clathratus
            Jan 1 at 10:04





            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna