Finding the MVUE from two independent random samples
$begingroup$
Suppose we have a random sample $X_1, X_2, ldots, X_n$ from exponential$~(β >0)$
$text{i.e. }f(xmid β) = {1/β} ~e^{−x/β}$
and a random sample$~Y_1, Y_2, ldots, Y_n$ from exponential$~(⍺ >0)$ and assume both sample are independent.
let$~~ θ = P(X_1 < Y_1)$ Find the MVUE of $~θ~~$ for $n=2$.
So, first I calculate the $$θ=int_0^ ∞int_x^infty frac{1}{β} ~e^{−x/β}~~ frac{1}{⍺ } ~e^{−y/⍺} , dy , dx= fracalpha {alpha+beta}$$
Then since $f(X,Y) =f(X)cdot f(Y) =f(X_1)cdot f(X_2)cdot f(Y_1)cdot f(Y_2)$ belongs to exponential family then
$(x_1+x_2, y_1+y_2)$ is complete sufficient statistics.
$x_1+x_2sim operatorname{Gamma}(2,beta)$ and $y_1+y_2sim operatorname{Gamma}(2,alpha).$
Now, I am stuck, any help please.
mathematical-statistics inference information-theory
$endgroup$
add a comment |
$begingroup$
Suppose we have a random sample $X_1, X_2, ldots, X_n$ from exponential$~(β >0)$
$text{i.e. }f(xmid β) = {1/β} ~e^{−x/β}$
and a random sample$~Y_1, Y_2, ldots, Y_n$ from exponential$~(⍺ >0)$ and assume both sample are independent.
let$~~ θ = P(X_1 < Y_1)$ Find the MVUE of $~θ~~$ for $n=2$.
So, first I calculate the $$θ=int_0^ ∞int_x^infty frac{1}{β} ~e^{−x/β}~~ frac{1}{⍺ } ~e^{−y/⍺} , dy , dx= fracalpha {alpha+beta}$$
Then since $f(X,Y) =f(X)cdot f(Y) =f(X_1)cdot f(X_2)cdot f(Y_1)cdot f(Y_2)$ belongs to exponential family then
$(x_1+x_2, y_1+y_2)$ is complete sufficient statistics.
$x_1+x_2sim operatorname{Gamma}(2,beta)$ and $y_1+y_2sim operatorname{Gamma}(2,alpha).$
Now, I am stuck, any help please.
mathematical-statistics inference information-theory
$endgroup$
$begingroup$
Im sorry I dont really understand what your are trying to calculate? What is MVUE and is this what you are trying to find?
$endgroup$
– Jesper Hybel
Jan 1 at 4:10
$begingroup$
My bad, minimum variance unbiased estimator
$endgroup$
– user0533535412
Jan 1 at 7:19
add a comment |
$begingroup$
Suppose we have a random sample $X_1, X_2, ldots, X_n$ from exponential$~(β >0)$
$text{i.e. }f(xmid β) = {1/β} ~e^{−x/β}$
and a random sample$~Y_1, Y_2, ldots, Y_n$ from exponential$~(⍺ >0)$ and assume both sample are independent.
let$~~ θ = P(X_1 < Y_1)$ Find the MVUE of $~θ~~$ for $n=2$.
So, first I calculate the $$θ=int_0^ ∞int_x^infty frac{1}{β} ~e^{−x/β}~~ frac{1}{⍺ } ~e^{−y/⍺} , dy , dx= fracalpha {alpha+beta}$$
Then since $f(X,Y) =f(X)cdot f(Y) =f(X_1)cdot f(X_2)cdot f(Y_1)cdot f(Y_2)$ belongs to exponential family then
$(x_1+x_2, y_1+y_2)$ is complete sufficient statistics.
$x_1+x_2sim operatorname{Gamma}(2,beta)$ and $y_1+y_2sim operatorname{Gamma}(2,alpha).$
Now, I am stuck, any help please.
mathematical-statistics inference information-theory
$endgroup$
Suppose we have a random sample $X_1, X_2, ldots, X_n$ from exponential$~(β >0)$
$text{i.e. }f(xmid β) = {1/β} ~e^{−x/β}$
and a random sample$~Y_1, Y_2, ldots, Y_n$ from exponential$~(⍺ >0)$ and assume both sample are independent.
let$~~ θ = P(X_1 < Y_1)$ Find the MVUE of $~θ~~$ for $n=2$.
So, first I calculate the $$θ=int_0^ ∞int_x^infty frac{1}{β} ~e^{−x/β}~~ frac{1}{⍺ } ~e^{−y/⍺} , dy , dx= fracalpha {alpha+beta}$$
Then since $f(X,Y) =f(X)cdot f(Y) =f(X_1)cdot f(X_2)cdot f(Y_1)cdot f(Y_2)$ belongs to exponential family then
$(x_1+x_2, y_1+y_2)$ is complete sufficient statistics.
$x_1+x_2sim operatorname{Gamma}(2,beta)$ and $y_1+y_2sim operatorname{Gamma}(2,alpha).$
Now, I am stuck, any help please.
mathematical-statistics inference information-theory
mathematical-statistics inference information-theory
edited Feb 10 at 23:22
Michael Hardy
3,8651430
3,8651430
asked Jan 1 at 2:50
user0533535412user0533535412
544
544
$begingroup$
Im sorry I dont really understand what your are trying to calculate? What is MVUE and is this what you are trying to find?
$endgroup$
– Jesper Hybel
Jan 1 at 4:10
$begingroup$
My bad, minimum variance unbiased estimator
$endgroup$
– user0533535412
Jan 1 at 7:19
add a comment |
$begingroup$
Im sorry I dont really understand what your are trying to calculate? What is MVUE and is this what you are trying to find?
$endgroup$
– Jesper Hybel
Jan 1 at 4:10
$begingroup$
My bad, minimum variance unbiased estimator
$endgroup$
– user0533535412
Jan 1 at 7:19
$begingroup$
Im sorry I dont really understand what your are trying to calculate? What is MVUE and is this what you are trying to find?
$endgroup$
– Jesper Hybel
Jan 1 at 4:10
$begingroup$
Im sorry I dont really understand what your are trying to calculate? What is MVUE and is this what you are trying to find?
$endgroup$
– Jesper Hybel
Jan 1 at 4:10
$begingroup$
My bad, minimum variance unbiased estimator
$endgroup$
– user0533535412
Jan 1 at 7:19
$begingroup$
My bad, minimum variance unbiased estimator
$endgroup$
– user0533535412
Jan 1 at 7:19
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Some of your notation is abominable and most unfortunately, you are in good company. You're using the same letter $f$ to refer to several different functions. If instead one writes $f_X$ and $f_Y$ then one can understand the difference between $f_X(3)$ and $f_Y(3),$ and one can understand things like $Pr(Xle x)$ (where $X$ and $x$ are two different things).
And you should say $X_1+X_2,$ rather than $x_1+x_2,$ has a gamma distribution, and similarly for the other one.
You have
$$
f_{X_1,X_2}(x_1,x_2) = frac 1 {beta^2} e^{-(x_1+x_2)/beta} quadtext{for } x_1,x_2 ge 0,
$$
and the fact that this depends on $(x_1,x_2)$ only through $x_1+x_2$ is sufficient (but not necessary) to establish that $X_1+X_2$ (not $x_1+x_2$) is a sufficient statistic for $beta.$
Showing completeness is another matter, but before that let's Rao–Blackwellize.
Let $W = begin{cases} 1 & text{if } X_1 < Y_1, \ 0 & text{otherwise.} end{cases}$
Then $W$ is an unbiased estimator of $theta.$ So the Rao–Blackwell estimator is
begin{align}
& operatorname E(Wmid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(W=1mid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(X_1<Y_1mid X_1+X_2, Y_1+Y_2).
end{align}
The conditional distribution of $X_1$ given that $X_1+X_2=x$ is uniform on the interval $[0,x]$ because the joint density of $(X_1,X_2)$ is constant on that set. Similarly the conditional distribution of $Y_1$ given $Y_1+Y_2=y$ is uniform on $[0,y].$ Hence the conditional distribution of $(U_1,U_2)=(X_1/x,Y_1/y)$ given $X_1+X_2=x, , Y_1+Y_2=y$ is uniform in the square $[0,1]times[0,1].$ We seek $Prleft( U_1 < dfrac y x U_2 right).$
$$
Prleft(U_1 < frac y x U_2 right) = begin{cases} y/(2x) & text{if } x ge y \[8pt] 1 - x/(2y) & text{if } x le y. end{cases}
$$
So the Rao–Blackwell estimator is
$$
frac 1 2 times begin{cases} frac{Y_1+Y_2}{X_1+X_2} & text{if that is} le 1/2, \[8pt] 1-frac{X_1+X_2}{Y_2+Y_2} & text{if that is} ge 1/2. end{cases}
$$
That's the UMVUE if we have completeness.
begin{align}
& operatorname E(g(X_1+X_2)) \[8pt]
= {} & frac 1 {Gamma(2)} int_0^infty g(x) x^{2-1} e^{-x/beta} , frac{dx} beta.
end{align}
This is the Laplace transform, evaluated at $1/beta,$ of $xmapsto xg(x).$ We want it to be $0$ regardless of the value of $beta.$ That can happen only if $xg(x)$ is $0$ for all values of $xge0.$ Thus we have no nontrivial unbiased estimators of zero.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f385141%2ffinding-the-mvue-from-two-independent-random-samples%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Some of your notation is abominable and most unfortunately, you are in good company. You're using the same letter $f$ to refer to several different functions. If instead one writes $f_X$ and $f_Y$ then one can understand the difference between $f_X(3)$ and $f_Y(3),$ and one can understand things like $Pr(Xle x)$ (where $X$ and $x$ are two different things).
And you should say $X_1+X_2,$ rather than $x_1+x_2,$ has a gamma distribution, and similarly for the other one.
You have
$$
f_{X_1,X_2}(x_1,x_2) = frac 1 {beta^2} e^{-(x_1+x_2)/beta} quadtext{for } x_1,x_2 ge 0,
$$
and the fact that this depends on $(x_1,x_2)$ only through $x_1+x_2$ is sufficient (but not necessary) to establish that $X_1+X_2$ (not $x_1+x_2$) is a sufficient statistic for $beta.$
Showing completeness is another matter, but before that let's Rao–Blackwellize.
Let $W = begin{cases} 1 & text{if } X_1 < Y_1, \ 0 & text{otherwise.} end{cases}$
Then $W$ is an unbiased estimator of $theta.$ So the Rao–Blackwell estimator is
begin{align}
& operatorname E(Wmid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(W=1mid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(X_1<Y_1mid X_1+X_2, Y_1+Y_2).
end{align}
The conditional distribution of $X_1$ given that $X_1+X_2=x$ is uniform on the interval $[0,x]$ because the joint density of $(X_1,X_2)$ is constant on that set. Similarly the conditional distribution of $Y_1$ given $Y_1+Y_2=y$ is uniform on $[0,y].$ Hence the conditional distribution of $(U_1,U_2)=(X_1/x,Y_1/y)$ given $X_1+X_2=x, , Y_1+Y_2=y$ is uniform in the square $[0,1]times[0,1].$ We seek $Prleft( U_1 < dfrac y x U_2 right).$
$$
Prleft(U_1 < frac y x U_2 right) = begin{cases} y/(2x) & text{if } x ge y \[8pt] 1 - x/(2y) & text{if } x le y. end{cases}
$$
So the Rao–Blackwell estimator is
$$
frac 1 2 times begin{cases} frac{Y_1+Y_2}{X_1+X_2} & text{if that is} le 1/2, \[8pt] 1-frac{X_1+X_2}{Y_2+Y_2} & text{if that is} ge 1/2. end{cases}
$$
That's the UMVUE if we have completeness.
begin{align}
& operatorname E(g(X_1+X_2)) \[8pt]
= {} & frac 1 {Gamma(2)} int_0^infty g(x) x^{2-1} e^{-x/beta} , frac{dx} beta.
end{align}
This is the Laplace transform, evaluated at $1/beta,$ of $xmapsto xg(x).$ We want it to be $0$ regardless of the value of $beta.$ That can happen only if $xg(x)$ is $0$ for all values of $xge0.$ Thus we have no nontrivial unbiased estimators of zero.
$endgroup$
add a comment |
$begingroup$
Some of your notation is abominable and most unfortunately, you are in good company. You're using the same letter $f$ to refer to several different functions. If instead one writes $f_X$ and $f_Y$ then one can understand the difference between $f_X(3)$ and $f_Y(3),$ and one can understand things like $Pr(Xle x)$ (where $X$ and $x$ are two different things).
And you should say $X_1+X_2,$ rather than $x_1+x_2,$ has a gamma distribution, and similarly for the other one.
You have
$$
f_{X_1,X_2}(x_1,x_2) = frac 1 {beta^2} e^{-(x_1+x_2)/beta} quadtext{for } x_1,x_2 ge 0,
$$
and the fact that this depends on $(x_1,x_2)$ only through $x_1+x_2$ is sufficient (but not necessary) to establish that $X_1+X_2$ (not $x_1+x_2$) is a sufficient statistic for $beta.$
Showing completeness is another matter, but before that let's Rao–Blackwellize.
Let $W = begin{cases} 1 & text{if } X_1 < Y_1, \ 0 & text{otherwise.} end{cases}$
Then $W$ is an unbiased estimator of $theta.$ So the Rao–Blackwell estimator is
begin{align}
& operatorname E(Wmid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(W=1mid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(X_1<Y_1mid X_1+X_2, Y_1+Y_2).
end{align}
The conditional distribution of $X_1$ given that $X_1+X_2=x$ is uniform on the interval $[0,x]$ because the joint density of $(X_1,X_2)$ is constant on that set. Similarly the conditional distribution of $Y_1$ given $Y_1+Y_2=y$ is uniform on $[0,y].$ Hence the conditional distribution of $(U_1,U_2)=(X_1/x,Y_1/y)$ given $X_1+X_2=x, , Y_1+Y_2=y$ is uniform in the square $[0,1]times[0,1].$ We seek $Prleft( U_1 < dfrac y x U_2 right).$
$$
Prleft(U_1 < frac y x U_2 right) = begin{cases} y/(2x) & text{if } x ge y \[8pt] 1 - x/(2y) & text{if } x le y. end{cases}
$$
So the Rao–Blackwell estimator is
$$
frac 1 2 times begin{cases} frac{Y_1+Y_2}{X_1+X_2} & text{if that is} le 1/2, \[8pt] 1-frac{X_1+X_2}{Y_2+Y_2} & text{if that is} ge 1/2. end{cases}
$$
That's the UMVUE if we have completeness.
begin{align}
& operatorname E(g(X_1+X_2)) \[8pt]
= {} & frac 1 {Gamma(2)} int_0^infty g(x) x^{2-1} e^{-x/beta} , frac{dx} beta.
end{align}
This is the Laplace transform, evaluated at $1/beta,$ of $xmapsto xg(x).$ We want it to be $0$ regardless of the value of $beta.$ That can happen only if $xg(x)$ is $0$ for all values of $xge0.$ Thus we have no nontrivial unbiased estimators of zero.
$endgroup$
add a comment |
$begingroup$
Some of your notation is abominable and most unfortunately, you are in good company. You're using the same letter $f$ to refer to several different functions. If instead one writes $f_X$ and $f_Y$ then one can understand the difference between $f_X(3)$ and $f_Y(3),$ and one can understand things like $Pr(Xle x)$ (where $X$ and $x$ are two different things).
And you should say $X_1+X_2,$ rather than $x_1+x_2,$ has a gamma distribution, and similarly for the other one.
You have
$$
f_{X_1,X_2}(x_1,x_2) = frac 1 {beta^2} e^{-(x_1+x_2)/beta} quadtext{for } x_1,x_2 ge 0,
$$
and the fact that this depends on $(x_1,x_2)$ only through $x_1+x_2$ is sufficient (but not necessary) to establish that $X_1+X_2$ (not $x_1+x_2$) is a sufficient statistic for $beta.$
Showing completeness is another matter, but before that let's Rao–Blackwellize.
Let $W = begin{cases} 1 & text{if } X_1 < Y_1, \ 0 & text{otherwise.} end{cases}$
Then $W$ is an unbiased estimator of $theta.$ So the Rao–Blackwell estimator is
begin{align}
& operatorname E(Wmid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(W=1mid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(X_1<Y_1mid X_1+X_2, Y_1+Y_2).
end{align}
The conditional distribution of $X_1$ given that $X_1+X_2=x$ is uniform on the interval $[0,x]$ because the joint density of $(X_1,X_2)$ is constant on that set. Similarly the conditional distribution of $Y_1$ given $Y_1+Y_2=y$ is uniform on $[0,y].$ Hence the conditional distribution of $(U_1,U_2)=(X_1/x,Y_1/y)$ given $X_1+X_2=x, , Y_1+Y_2=y$ is uniform in the square $[0,1]times[0,1].$ We seek $Prleft( U_1 < dfrac y x U_2 right).$
$$
Prleft(U_1 < frac y x U_2 right) = begin{cases} y/(2x) & text{if } x ge y \[8pt] 1 - x/(2y) & text{if } x le y. end{cases}
$$
So the Rao–Blackwell estimator is
$$
frac 1 2 times begin{cases} frac{Y_1+Y_2}{X_1+X_2} & text{if that is} le 1/2, \[8pt] 1-frac{X_1+X_2}{Y_2+Y_2} & text{if that is} ge 1/2. end{cases}
$$
That's the UMVUE if we have completeness.
begin{align}
& operatorname E(g(X_1+X_2)) \[8pt]
= {} & frac 1 {Gamma(2)} int_0^infty g(x) x^{2-1} e^{-x/beta} , frac{dx} beta.
end{align}
This is the Laplace transform, evaluated at $1/beta,$ of $xmapsto xg(x).$ We want it to be $0$ regardless of the value of $beta.$ That can happen only if $xg(x)$ is $0$ for all values of $xge0.$ Thus we have no nontrivial unbiased estimators of zero.
$endgroup$
Some of your notation is abominable and most unfortunately, you are in good company. You're using the same letter $f$ to refer to several different functions. If instead one writes $f_X$ and $f_Y$ then one can understand the difference between $f_X(3)$ and $f_Y(3),$ and one can understand things like $Pr(Xle x)$ (where $X$ and $x$ are two different things).
And you should say $X_1+X_2,$ rather than $x_1+x_2,$ has a gamma distribution, and similarly for the other one.
You have
$$
f_{X_1,X_2}(x_1,x_2) = frac 1 {beta^2} e^{-(x_1+x_2)/beta} quadtext{for } x_1,x_2 ge 0,
$$
and the fact that this depends on $(x_1,x_2)$ only through $x_1+x_2$ is sufficient (but not necessary) to establish that $X_1+X_2$ (not $x_1+x_2$) is a sufficient statistic for $beta.$
Showing completeness is another matter, but before that let's Rao–Blackwellize.
Let $W = begin{cases} 1 & text{if } X_1 < Y_1, \ 0 & text{otherwise.} end{cases}$
Then $W$ is an unbiased estimator of $theta.$ So the Rao–Blackwell estimator is
begin{align}
& operatorname E(Wmid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(W=1mid X_1+X_2, Y_1+Y_2) \[10pt]
= {} & Pr(X_1<Y_1mid X_1+X_2, Y_1+Y_2).
end{align}
The conditional distribution of $X_1$ given that $X_1+X_2=x$ is uniform on the interval $[0,x]$ because the joint density of $(X_1,X_2)$ is constant on that set. Similarly the conditional distribution of $Y_1$ given $Y_1+Y_2=y$ is uniform on $[0,y].$ Hence the conditional distribution of $(U_1,U_2)=(X_1/x,Y_1/y)$ given $X_1+X_2=x, , Y_1+Y_2=y$ is uniform in the square $[0,1]times[0,1].$ We seek $Prleft( U_1 < dfrac y x U_2 right).$
$$
Prleft(U_1 < frac y x U_2 right) = begin{cases} y/(2x) & text{if } x ge y \[8pt] 1 - x/(2y) & text{if } x le y. end{cases}
$$
So the Rao–Blackwell estimator is
$$
frac 1 2 times begin{cases} frac{Y_1+Y_2}{X_1+X_2} & text{if that is} le 1/2, \[8pt] 1-frac{X_1+X_2}{Y_2+Y_2} & text{if that is} ge 1/2. end{cases}
$$
That's the UMVUE if we have completeness.
begin{align}
& operatorname E(g(X_1+X_2)) \[8pt]
= {} & frac 1 {Gamma(2)} int_0^infty g(x) x^{2-1} e^{-x/beta} , frac{dx} beta.
end{align}
This is the Laplace transform, evaluated at $1/beta,$ of $xmapsto xg(x).$ We want it to be $0$ regardless of the value of $beta.$ That can happen only if $xg(x)$ is $0$ for all values of $xge0.$ Thus we have no nontrivial unbiased estimators of zero.
edited Jan 1 at 20:43
answered Jan 1 at 7:06
Michael HardyMichael Hardy
3,8651430
3,8651430
add a comment |
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f385141%2ffinding-the-mvue-from-two-independent-random-samples%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Im sorry I dont really understand what your are trying to calculate? What is MVUE and is this what you are trying to find?
$endgroup$
– Jesper Hybel
Jan 1 at 4:10
$begingroup$
My bad, minimum variance unbiased estimator
$endgroup$
– user0533535412
Jan 1 at 7:19