How to evaluate $int_S(x^4+y^4+z^4) , dS$ over surface of the unit sphere.












3












$begingroup$



Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$




My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$



Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$



Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$



Thus I try to calculate this integral directly using the definition of surface integral.



But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The outer normal vector $n$ is $(x,y,z)$. This may help.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:13










  • $begingroup$
    but we should take the unit normal to use divergence theorem...@xbh
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:17










  • $begingroup$
    Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:18










  • $begingroup$
    ohh...Right ......
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:19










  • $begingroup$
    What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
    $endgroup$
    – herb steinberg
    Aug 12 '18 at 15:26
















3












$begingroup$



Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$




My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$



Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$



Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$



Thus I try to calculate this integral directly using the definition of surface integral.



But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The outer normal vector $n$ is $(x,y,z)$. This may help.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:13










  • $begingroup$
    but we should take the unit normal to use divergence theorem...@xbh
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:17










  • $begingroup$
    Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:18










  • $begingroup$
    ohh...Right ......
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:19










  • $begingroup$
    What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
    $endgroup$
    – herb steinberg
    Aug 12 '18 at 15:26














3












3








3


3



$begingroup$



Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$




My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$



Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$



Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$



Thus I try to calculate this integral directly using the definition of surface integral.



But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.










share|cite|improve this question











$endgroup$





Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$




My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$



Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$



Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$



Thus I try to calculate this integral directly using the definition of surface integral.



But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.







multivariable-calculus surface-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 12 '18 at 16:22









Michael Hardy

1




1










asked Aug 12 '18 at 15:07









Indrajit GhoshIndrajit Ghosh

1,0921718




1,0921718












  • $begingroup$
    The outer normal vector $n$ is $(x,y,z)$. This may help.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:13










  • $begingroup$
    but we should take the unit normal to use divergence theorem...@xbh
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:17










  • $begingroup$
    Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:18










  • $begingroup$
    ohh...Right ......
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:19










  • $begingroup$
    What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
    $endgroup$
    – herb steinberg
    Aug 12 '18 at 15:26


















  • $begingroup$
    The outer normal vector $n$ is $(x,y,z)$. This may help.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:13










  • $begingroup$
    but we should take the unit normal to use divergence theorem...@xbh
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:17










  • $begingroup$
    Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
    $endgroup$
    – xbh
    Aug 12 '18 at 15:18










  • $begingroup$
    ohh...Right ......
    $endgroup$
    – Indrajit Ghosh
    Aug 12 '18 at 15:19










  • $begingroup$
    What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
    $endgroup$
    – herb steinberg
    Aug 12 '18 at 15:26
















$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13




$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13












$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17




$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17












$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18




$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18












$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19




$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19












$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26




$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26










3 Answers
3






active

oldest

votes


















2












$begingroup$

I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Let $~f(x,y,z)=x^4+y^4+z^4$



    The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:



    $int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$



      where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
      $int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
      $I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880420%2fhow-to-evaluate-int-sx4y4z4-ds-over-surface-of-the-unit-sphere%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.






        share|cite|improve this answer











        $endgroup$


















          2












          $begingroup$

          I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.






          share|cite|improve this answer











          $endgroup$
















            2












            2








            2





            $begingroup$

            I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.






            share|cite|improve this answer











            $endgroup$



            I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 3 at 1:34

























            answered Aug 12 '18 at 16:47









            BatominovskiBatominovski

            33.1k33293




            33.1k33293























                1












                $begingroup$

                Let $~f(x,y,z)=x^4+y^4+z^4$



                The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:



                $int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  Let $~f(x,y,z)=x^4+y^4+z^4$



                  The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:



                  $int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Let $~f(x,y,z)=x^4+y^4+z^4$



                    The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:



                    $int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$






                    share|cite|improve this answer









                    $endgroup$



                    Let $~f(x,y,z)=x^4+y^4+z^4$



                    The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:



                    $int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Aug 12 '18 at 16:57









                    Indrajit GhoshIndrajit Ghosh

                    1,0921718




                    1,0921718























                        0












                        $begingroup$

                        Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$



                        where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
                        $int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
                        $I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.






                        share|cite|improve this answer











                        $endgroup$


















                          0












                          $begingroup$

                          Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$



                          where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
                          $int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
                          $I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.






                          share|cite|improve this answer











                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$



                            where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
                            $int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
                            $I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.






                            share|cite|improve this answer











                            $endgroup$



                            Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$



                            where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
                            $int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
                            $I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Aug 12 '18 at 21:26

























                            answered Aug 12 '18 at 21:20









                            herb steinbergherb steinberg

                            2,8732310




                            2,8732310






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880420%2fhow-to-evaluate-int-sx4y4z4-ds-over-surface-of-the-unit-sphere%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Bressuire

                                Cabo Verde

                                Gyllenstierna