How to evaluate $int_S(x^4+y^4+z^4) , dS$ over surface of the unit sphere.
$begingroup$
Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$
My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$
Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$
Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$
Thus I try to calculate this integral directly using the definition of surface integral.
But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.
multivariable-calculus surface-integrals
$endgroup$
|
show 1 more comment
$begingroup$
Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$
My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$
Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$
Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$
Thus I try to calculate this integral directly using the definition of surface integral.
But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.
multivariable-calculus surface-integrals
$endgroup$
$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13
$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17
$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18
$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19
$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26
|
show 1 more comment
$begingroup$
Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$
My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$
Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$
Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$
Thus I try to calculate this integral directly using the definition of surface integral.
But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.
multivariable-calculus surface-integrals
$endgroup$
Question. Let $S$ denote the unit sphere in $mathbb{R}^3$. Evaluate: $$int_S (x^4+y^4+z^4) , dS$$
My Solution. First I parametrize $S$ by $$r(u,v)=(cos v cos u, cos v sin u, sin v)$$ $0le u le 2 pi;~-frac{pi}{2}le v le frac{pi}{2}$
Let $~f(x,y,z)=x^4+y^4+z^4$. Here $~|frac{partial r}{partial u} times frac{partial r}{partial v}|=|cos v|$
Then $displaystyle int_S(x^4+y^4+z^4),dS = int_{-pi/2}^{pi/2} int_0^{2pi} f[r(u,v)] left|frac{partial r}{partial u} times frac{partial r}{partial v}right|~du~dv$
Thus I try to calculate this integral directly using the definition of surface integral.
But I had so much calculations in this way. Does this particular problem can be solved using any theorems e.g-Gauss' Divergence (By writing $f$ as $Fcdot n$ for some vector field $F$?
Thank you.
multivariable-calculus surface-integrals
multivariable-calculus surface-integrals
edited Aug 12 '18 at 16:22
Michael Hardy
1
1
asked Aug 12 '18 at 15:07
Indrajit GhoshIndrajit Ghosh
1,0921718
1,0921718
$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13
$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17
$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18
$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19
$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26
|
show 1 more comment
$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13
$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17
$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18
$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19
$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26
$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13
$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13
$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17
$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17
$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18
$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18
$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19
$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19
$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26
$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26
|
show 1 more comment
3 Answers
3
active
oldest
votes
$begingroup$
I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.
$endgroup$
add a comment |
$begingroup$
Let $~f(x,y,z)=x^4+y^4+z^4$
The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:
$int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$
$endgroup$
add a comment |
$begingroup$
Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$
where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
$int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
$I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880420%2fhow-to-evaluate-int-sx4y4z4-ds-over-surface-of-the-unit-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.
$endgroup$
add a comment |
$begingroup$
I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.
$endgroup$
add a comment |
$begingroup$
I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.
$endgroup$
I shall denote by $text{d}Sigma$ the surface area element. In the polar form $$(x,y,z)=big(rcos(phi)sin(theta),rsin(phi)cos(theta),rcos(theta)big),,$$ I would only compute the integral $$int_{partial B_1(boldsymbol{0})},z^4,text{d}Sigma=int_0^{2pi},int_0^pi,cos^4(theta),sin(theta),text{d}theta,text{d}phi=2pi,int_{-1}^{+1},t^4,text{d}t=frac{4pi}{5},,$$ where $t:=cos(theta)$, and then multiply that by $3$ to get the final answer. Due to symmetry, this is justified.
edited Jan 3 at 1:34
answered Aug 12 '18 at 16:47
BatominovskiBatominovski
33.1k33293
33.1k33293
add a comment |
add a comment |
$begingroup$
Let $~f(x,y,z)=x^4+y^4+z^4$
The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:
$int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$
$endgroup$
add a comment |
$begingroup$
Let $~f(x,y,z)=x^4+y^4+z^4$
The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:
$int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$
$endgroup$
add a comment |
$begingroup$
Let $~f(x,y,z)=x^4+y^4+z^4$
The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:
$int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$
$endgroup$
Let $~f(x,y,z)=x^4+y^4+z^4$
The unit outward drawn normal to $S$ is $n=(x,y,z)$. Taking $F=(x^3,y^3,z^3)$ we have $f=F.n$. Hence the given integral:
$int_{S}f(x,y,z)dS=int_{S}F.n~dS=int_{V}div F~dV =3int_{0}^{1}int_{-pi/2}^{-pi/2}int_{0}^{2pi}r^2|cos v|~dr~du~dv=frac{12pi}{5}.$
answered Aug 12 '18 at 16:57
Indrajit GhoshIndrajit Ghosh
1,0921718
1,0921718
add a comment |
add a comment |
$begingroup$
Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$
where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
$int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
$I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.
$endgroup$
add a comment |
$begingroup$
Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$
where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
$int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
$I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.
$endgroup$
add a comment |
$begingroup$
Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$
where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
$int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
$I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.
$endgroup$
Direct calculation (unit sphere). $x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+x^2z^2+y^2z^2)=(1-2h)$
where $h=cos^4vcos^2usin^2u+cos^2vsin^2v=h_1+h_2$. The surface integral is $S=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(1-2h)cosvdvdu$. These can be calculated directly.
$int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cosvdvdu=4pi$. Let
$I_1=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}cos^5vdvcos^2usin^2udu$. Let $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}sin^2vcos^3vdv$. At this point note that $I_1=frac{I_2}{2}$. $I_2$ is easier to calculate, so we don't need to calculate $I_1$. $I_2=int_0^{2pi}int_{frac{-pi}{2}}^{frac{pi}{2}}(sin^2v-sin^4v)cosvdv=frac{8pi}{15}$. Therefore $S=frac{12pi}{5}$.
edited Aug 12 '18 at 21:26
answered Aug 12 '18 at 21:20
herb steinbergherb steinberg
2,8732310
2,8732310
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2880420%2fhow-to-evaluate-int-sx4y4z4-ds-over-surface-of-the-unit-sphere%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The outer normal vector $n$ is $(x,y,z)$. This may help.
$endgroup$
– xbh
Aug 12 '18 at 15:13
$begingroup$
but we should take the unit normal to use divergence theorem...@xbh
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:17
$begingroup$
Normally you need to make it a unit one, but on the unit sphere, this is truly the unit vector at $(x,y,z)$.
$endgroup$
– xbh
Aug 12 '18 at 15:18
$begingroup$
ohh...Right ......
$endgroup$
– Indrajit Ghosh
Aug 12 '18 at 15:19
$begingroup$
What was the problem in direct calculation? All you need to do is calculate integrals of powers of sin or cos .of u and v.
$endgroup$
– herb steinberg
Aug 12 '18 at 15:26