Multiple integral equation with Barycentric coordinate
$begingroup$
$Delta(i, j, k)$ is a triangle with vertex $i(x_i, y_i), j(x_j, y_j), k(x_k, y_k)$ in counterclockwise, $P(x, y)$ is a point in $Delta(i, j, k)$, $S, S_i, S_j, S_k$ is the area of $Delta(i, j, k), Delta(j, k, P), Delta(k, i, P), Delta(i, j, P)$
we have $$left{begin{align}2S &= begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x_k & y_kend{vmatrix}, 2S_i = begin{vmatrix}1 & x & y \1 & x_j & y_j \1 & x_k & y_kend{vmatrix} \2S_j &= begin{vmatrix}1 & x_i & y_i \1 & x & y \1 & x_k & y_kend{vmatrix}, 2S_k = begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x & y end{vmatrix} end{align}right.$$
$P$'s barycentric coordinate is $(L_i, L_j, L_k)$
$$left{begin{align}L_i &= dfrac{S_i}{S} = dfrac{1}{2S}[(x_j y_k - x_k y_j) + (y_j - y_k)x + (x_k - x_j)y] \ L_j &= dfrac{S_j}{S} = dfrac{1}{2S}[(x_k y_i - x_i y_k) + (y_k - y_i)x + (x_i - x_k)y] \ L_k &= dfrac{S_k}{S} = dfrac{1}{2S}[(x_i y_j - x_j y_i) + (y_i - y_j)x + (x_j - x_i)y]end{align} right.$$
and
$$left{begin{align}x &= x_i L_i + x_j L_j + x_k L_k \ y &= y_i L_i + y_j L_j + y_k L_kend{align}right.$$
The problem is how to proof
$$begin{equation}iintlimits_{Delta(i, j, k)}L^p_i L^q_j L^r_k dxdy = 2Sdfrac{p!q!r!}{p + q + r + 2}end{equation}$$
I have replace $dxdy$ with $(x_i dL_i + x_j dL_j + x_k dL_k)(y_i dL_i + y_j dL_j + y_k dL_k)$ but still do not know how to continue.
integration barycentric-coordinates
$endgroup$
add a comment |
$begingroup$
$Delta(i, j, k)$ is a triangle with vertex $i(x_i, y_i), j(x_j, y_j), k(x_k, y_k)$ in counterclockwise, $P(x, y)$ is a point in $Delta(i, j, k)$, $S, S_i, S_j, S_k$ is the area of $Delta(i, j, k), Delta(j, k, P), Delta(k, i, P), Delta(i, j, P)$
we have $$left{begin{align}2S &= begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x_k & y_kend{vmatrix}, 2S_i = begin{vmatrix}1 & x & y \1 & x_j & y_j \1 & x_k & y_kend{vmatrix} \2S_j &= begin{vmatrix}1 & x_i & y_i \1 & x & y \1 & x_k & y_kend{vmatrix}, 2S_k = begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x & y end{vmatrix} end{align}right.$$
$P$'s barycentric coordinate is $(L_i, L_j, L_k)$
$$left{begin{align}L_i &= dfrac{S_i}{S} = dfrac{1}{2S}[(x_j y_k - x_k y_j) + (y_j - y_k)x + (x_k - x_j)y] \ L_j &= dfrac{S_j}{S} = dfrac{1}{2S}[(x_k y_i - x_i y_k) + (y_k - y_i)x + (x_i - x_k)y] \ L_k &= dfrac{S_k}{S} = dfrac{1}{2S}[(x_i y_j - x_j y_i) + (y_i - y_j)x + (x_j - x_i)y]end{align} right.$$
and
$$left{begin{align}x &= x_i L_i + x_j L_j + x_k L_k \ y &= y_i L_i + y_j L_j + y_k L_kend{align}right.$$
The problem is how to proof
$$begin{equation}iintlimits_{Delta(i, j, k)}L^p_i L^q_j L^r_k dxdy = 2Sdfrac{p!q!r!}{p + q + r + 2}end{equation}$$
I have replace $dxdy$ with $(x_i dL_i + x_j dL_j + x_k dL_k)(y_i dL_i + y_j dL_j + y_k dL_k)$ but still do not know how to continue.
integration barycentric-coordinates
$endgroup$
add a comment |
$begingroup$
$Delta(i, j, k)$ is a triangle with vertex $i(x_i, y_i), j(x_j, y_j), k(x_k, y_k)$ in counterclockwise, $P(x, y)$ is a point in $Delta(i, j, k)$, $S, S_i, S_j, S_k$ is the area of $Delta(i, j, k), Delta(j, k, P), Delta(k, i, P), Delta(i, j, P)$
we have $$left{begin{align}2S &= begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x_k & y_kend{vmatrix}, 2S_i = begin{vmatrix}1 & x & y \1 & x_j & y_j \1 & x_k & y_kend{vmatrix} \2S_j &= begin{vmatrix}1 & x_i & y_i \1 & x & y \1 & x_k & y_kend{vmatrix}, 2S_k = begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x & y end{vmatrix} end{align}right.$$
$P$'s barycentric coordinate is $(L_i, L_j, L_k)$
$$left{begin{align}L_i &= dfrac{S_i}{S} = dfrac{1}{2S}[(x_j y_k - x_k y_j) + (y_j - y_k)x + (x_k - x_j)y] \ L_j &= dfrac{S_j}{S} = dfrac{1}{2S}[(x_k y_i - x_i y_k) + (y_k - y_i)x + (x_i - x_k)y] \ L_k &= dfrac{S_k}{S} = dfrac{1}{2S}[(x_i y_j - x_j y_i) + (y_i - y_j)x + (x_j - x_i)y]end{align} right.$$
and
$$left{begin{align}x &= x_i L_i + x_j L_j + x_k L_k \ y &= y_i L_i + y_j L_j + y_k L_kend{align}right.$$
The problem is how to proof
$$begin{equation}iintlimits_{Delta(i, j, k)}L^p_i L^q_j L^r_k dxdy = 2Sdfrac{p!q!r!}{p + q + r + 2}end{equation}$$
I have replace $dxdy$ with $(x_i dL_i + x_j dL_j + x_k dL_k)(y_i dL_i + y_j dL_j + y_k dL_k)$ but still do not know how to continue.
integration barycentric-coordinates
$endgroup$
$Delta(i, j, k)$ is a triangle with vertex $i(x_i, y_i), j(x_j, y_j), k(x_k, y_k)$ in counterclockwise, $P(x, y)$ is a point in $Delta(i, j, k)$, $S, S_i, S_j, S_k$ is the area of $Delta(i, j, k), Delta(j, k, P), Delta(k, i, P), Delta(i, j, P)$
we have $$left{begin{align}2S &= begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x_k & y_kend{vmatrix}, 2S_i = begin{vmatrix}1 & x & y \1 & x_j & y_j \1 & x_k & y_kend{vmatrix} \2S_j &= begin{vmatrix}1 & x_i & y_i \1 & x & y \1 & x_k & y_kend{vmatrix}, 2S_k = begin{vmatrix}1 & x_i & y_i \1 & x_j & y_j \1 & x & y end{vmatrix} end{align}right.$$
$P$'s barycentric coordinate is $(L_i, L_j, L_k)$
$$left{begin{align}L_i &= dfrac{S_i}{S} = dfrac{1}{2S}[(x_j y_k - x_k y_j) + (y_j - y_k)x + (x_k - x_j)y] \ L_j &= dfrac{S_j}{S} = dfrac{1}{2S}[(x_k y_i - x_i y_k) + (y_k - y_i)x + (x_i - x_k)y] \ L_k &= dfrac{S_k}{S} = dfrac{1}{2S}[(x_i y_j - x_j y_i) + (y_i - y_j)x + (x_j - x_i)y]end{align} right.$$
and
$$left{begin{align}x &= x_i L_i + x_j L_j + x_k L_k \ y &= y_i L_i + y_j L_j + y_k L_kend{align}right.$$
The problem is how to proof
$$begin{equation}iintlimits_{Delta(i, j, k)}L^p_i L^q_j L^r_k dxdy = 2Sdfrac{p!q!r!}{p + q + r + 2}end{equation}$$
I have replace $dxdy$ with $(x_i dL_i + x_j dL_j + x_k dL_k)(y_i dL_i + y_j dL_j + y_k dL_k)$ but still do not know how to continue.
integration barycentric-coordinates
integration barycentric-coordinates
asked Jan 3 at 9:00
BluedropsBluedrops
136
136
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060382%2fmultiple-integral-equation-with-barycentric-coordinate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060382%2fmultiple-integral-equation-with-barycentric-coordinate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown