differentiability in the origin of f(x,y)
up vote
0
down vote
favorite
I have $$
f(x,y) = cases{ sqrt{xy}& if $x>0,y>0$ \
-sqrt{xy}& if $x<0,y<0$ \
0 }
$$
I want calculate directional derivative $D_vf(0,0)$ with $v=(1,1)$
f is not differentiable in the origin but do directional derivatives exist ?
real-analysis multivariable-calculus
add a comment |
up vote
0
down vote
favorite
I have $$
f(x,y) = cases{ sqrt{xy}& if $x>0,y>0$ \
-sqrt{xy}& if $x<0,y<0$ \
0 }
$$
I want calculate directional derivative $D_vf(0,0)$ with $v=(1,1)$
f is not differentiable in the origin but do directional derivatives exist ?
real-analysis multivariable-calculus
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have $$
f(x,y) = cases{ sqrt{xy}& if $x>0,y>0$ \
-sqrt{xy}& if $x<0,y<0$ \
0 }
$$
I want calculate directional derivative $D_vf(0,0)$ with $v=(1,1)$
f is not differentiable in the origin but do directional derivatives exist ?
real-analysis multivariable-calculus
I have $$
f(x,y) = cases{ sqrt{xy}& if $x>0,y>0$ \
-sqrt{xy}& if $x<0,y<0$ \
0 }
$$
I want calculate directional derivative $D_vf(0,0)$ with $v=(1,1)$
f is not differentiable in the origin but do directional derivatives exist ?
real-analysis multivariable-calculus
real-analysis multivariable-calculus
edited Dec 4 at 11:22
José Carlos Santos
146k22116215
146k22116215
asked Nov 26 at 18:22
Giulia B.
413211
413211
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Hint: Your question is: does the limit $displaystylelim_{tto0}frac{f(t,t)}t$ exist? What do you think?
$lim_{tto0^+}frac{f(t,t)}t=lim_{tto0^+}frac{|t|}t=1$ and $lim_{tto0^-}frac{f(t,t)}t=lim_{tto0^-}frac{-|t|}t=1$ so exist?
– Giulia B.
Nov 26 at 18:33
Yes, it does, What's the doubt?
– José Carlos Santos
Nov 26 at 18:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014711%2fdifferentiability-in-the-origin-of-fx-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Hint: Your question is: does the limit $displaystylelim_{tto0}frac{f(t,t)}t$ exist? What do you think?
$lim_{tto0^+}frac{f(t,t)}t=lim_{tto0^+}frac{|t|}t=1$ and $lim_{tto0^-}frac{f(t,t)}t=lim_{tto0^-}frac{-|t|}t=1$ so exist?
– Giulia B.
Nov 26 at 18:33
Yes, it does, What's the doubt?
– José Carlos Santos
Nov 26 at 18:36
add a comment |
up vote
1
down vote
accepted
Hint: Your question is: does the limit $displaystylelim_{tto0}frac{f(t,t)}t$ exist? What do you think?
$lim_{tto0^+}frac{f(t,t)}t=lim_{tto0^+}frac{|t|}t=1$ and $lim_{tto0^-}frac{f(t,t)}t=lim_{tto0^-}frac{-|t|}t=1$ so exist?
– Giulia B.
Nov 26 at 18:33
Yes, it does, What's the doubt?
– José Carlos Santos
Nov 26 at 18:36
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Hint: Your question is: does the limit $displaystylelim_{tto0}frac{f(t,t)}t$ exist? What do you think?
Hint: Your question is: does the limit $displaystylelim_{tto0}frac{f(t,t)}t$ exist? What do you think?
answered Nov 26 at 18:25
José Carlos Santos
146k22116215
146k22116215
$lim_{tto0^+}frac{f(t,t)}t=lim_{tto0^+}frac{|t|}t=1$ and $lim_{tto0^-}frac{f(t,t)}t=lim_{tto0^-}frac{-|t|}t=1$ so exist?
– Giulia B.
Nov 26 at 18:33
Yes, it does, What's the doubt?
– José Carlos Santos
Nov 26 at 18:36
add a comment |
$lim_{tto0^+}frac{f(t,t)}t=lim_{tto0^+}frac{|t|}t=1$ and $lim_{tto0^-}frac{f(t,t)}t=lim_{tto0^-}frac{-|t|}t=1$ so exist?
– Giulia B.
Nov 26 at 18:33
Yes, it does, What's the doubt?
– José Carlos Santos
Nov 26 at 18:36
$lim_{tto0^+}frac{f(t,t)}t=lim_{tto0^+}frac{|t|}t=1$ and $lim_{tto0^-}frac{f(t,t)}t=lim_{tto0^-}frac{-|t|}t=1$ so exist?
– Giulia B.
Nov 26 at 18:33
$lim_{tto0^+}frac{f(t,t)}t=lim_{tto0^+}frac{|t|}t=1$ and $lim_{tto0^-}frac{f(t,t)}t=lim_{tto0^-}frac{-|t|}t=1$ so exist?
– Giulia B.
Nov 26 at 18:33
Yes, it does, What's the doubt?
– José Carlos Santos
Nov 26 at 18:36
Yes, it does, What's the doubt?
– José Carlos Santos
Nov 26 at 18:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014711%2fdifferentiability-in-the-origin-of-fx-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown