Why is...











up vote
1
down vote

favorite
1












Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?



The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.



My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$










share|cite|improve this question






















  • mathworld.wolfram.com/WernerFormulas.html
    – lab bhattacharjee
    Dec 4 at 11:45















up vote
1
down vote

favorite
1












Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?



The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.



My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$










share|cite|improve this question






















  • mathworld.wolfram.com/WernerFormulas.html
    – lab bhattacharjee
    Dec 4 at 11:45













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?



The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.



My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$










share|cite|improve this question













Problem A5 in the 1985 Putnam Competition: Let $I_m=int_0^{2pi}cos(x)cos(2x)cdotscos(mx)dx$. For which integers $m$, $1leq mleq10$, do we have $I_mneq0$?



The solution rewrites $cos(x)=frac{e^{ikx}+e^{-ikx}}{2}$. It then says that $$I_m=int_0^{2pi}prod_{k=1}^m{biggl(frac{e^{ikx}+e^{-ikx}}{2}biggr)}=2^{-m}sum_{epsilon_{k}=pm1}int_0^{2pi}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$
Where the sum ranges over the $2^m$ $m$-tuples $(epsilon_1,ldots,epsilon_m)$ with $epsilon_k=pm1$ for every $k$.



My question is, how do you make sense of the last step? Why is this true:
$$prod_{k=1}^m{(e^{ikx}+e^{-ikx})}=sum_{epsilon_{k}=pm1}{e^{i(epsilon_1+2epsilon_2+cdots+mepsilon_m)x}}$$







products






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 4 at 11:27









David K

1007




1007












  • mathworld.wolfram.com/WernerFormulas.html
    – lab bhattacharjee
    Dec 4 at 11:45


















  • mathworld.wolfram.com/WernerFormulas.html
    – lab bhattacharjee
    Dec 4 at 11:45
















mathworld.wolfram.com/WernerFormulas.html
– lab bhattacharjee
Dec 4 at 11:45




mathworld.wolfram.com/WernerFormulas.html
– lab bhattacharjee
Dec 4 at 11:45










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted











We obtain
begin{align*}
color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
&=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
&=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
&=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
&,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
end{align*}

and the claim follows.




The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025448%2fwhy-is-prod-k-1meikxe-ikx-sum-epsilon-k-pm1ei-epsilon%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted











    We obtain
    begin{align*}
    color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
    &=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
    &=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
    cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
    &=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
    sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
    &=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
    &,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
    end{align*}

    and the claim follows.




    The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).






    share|cite|improve this answer



























      up vote
      1
      down vote



      accepted











      We obtain
      begin{align*}
      color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
      &=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
      &=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
      cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
      &=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
      sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
      &=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
      &,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
      end{align*}

      and the claim follows.




      The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).






      share|cite|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted







        We obtain
        begin{align*}
        color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
        &=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
        &=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
        cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
        &=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
        sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
        &=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
        &,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
        end{align*}

        and the claim follows.




        The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).






        share|cite|improve this answer















        We obtain
        begin{align*}
        color{blue}{prod_{k=1}^m}&color{blue}{left(e^{ikx}+e^{-ikx}right)}tag{1}\
        &=prod_{k=1}^mleft(sum_{varepsilon_{k}=pm 1}e^{ivarepsilon_{k}kx}right)\
        &=left(sum_{varepsilon_{1}=pm 1}e^{ivarepsilon_1 x}right)left(sum_{varepsilon_{2}=pm 1}e^{ivarepsilon_22 x}right)
        cdots left(sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_mm x}right)\
        &=sum_{varepsilon_{1}=pm 1}sum_{varepsilon_{2}=pm 1}cdots
        sum_{varepsilon_{m}=pm 1}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
        &=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ivarepsilon_1 x}e^{ivarepsilon_22 x}cdots e^{ivarepsilon_mm x}\
        &,,color{blue}{=sum_{{1leq k leq m}atop{varepsilon_{k}=pm 1}}e^{ileft(varepsilon_1 +2varepsilon_2+cdots +m varepsilon_{m}right)x}}tag{2}
        end{align*}

        and the claim follows.




        The product (1) consists of $m$ factors $e^{ikx}+e^{-ikx}$ where $1leq kleq m$. From each factor we select either $e^{ikx}$ or $e^{-ikx}$ giving a total of $2^m$ summands. These $2^m$ summands are explicitly stated in (2).







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 9 at 12:05

























        answered Dec 6 at 23:07









        Markus Scheuer

        59.7k455142




        59.7k455142






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025448%2fwhy-is-prod-k-1meikxe-ikx-sum-epsilon-k-pm1ei-epsilon%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna