Evaluate the limit of...
up vote
4
down vote
favorite
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
add a comment |
up vote
4
down vote
favorite
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
Dec 4 at 14:22
add a comment |
up vote
4
down vote
favorite
up vote
4
down vote
favorite
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)$$
My try:
The limit can be written as follows:
$$lim_{ntoinfty}left(frac{1}{n^2}cdotsum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}right)$$
Evaluate the following series:
$sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$
$frac{(k+1)^{k}}{k^{k-1}}=kcdotfrac{(k+1)^{k}}{k^{k}}=kcdotleft(1+frac{k+1}{k}-1right)^k=kcdotleft(1+frac{1}{k}right)^k$
Then:
$lim_{ktoinfty}frac{(k+1)^{k}}{k^{k-1}}=lim_{ktoinfty}kcdotleft(1+frac{1}{k}right)^k=ecdotinftyneq0 Longrightarrow sum_{k=1}^{infty}frac{(k+1)^{k}}{k^{k-1}}$ diverges.
Therefore:
$$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=0cdotinfty$$
What to do next?
calculus sequences-and-series limits
calculus sequences-and-series limits
edited Dec 4 at 15:31
Asaf Karagila♦
301k32422753
301k32422753
asked Dec 4 at 14:18
user605734 MBS
1789
1789
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
Dec 4 at 14:22
add a comment |
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
Dec 4 at 14:22
3
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
Dec 4 at 14:22
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
Dec 4 at 14:22
add a comment |
3 Answers
3
active
oldest
votes
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
add a comment |
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
add a comment |
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
3
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
Dec 4 at 14:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025640%2fevaluate-the-limit-of-lim-n-to-infty-frac1n2-left-frac21-frac9%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
add a comment |
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
add a comment |
up vote
5
down vote
accepted
up vote
5
down vote
accepted
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
HINT
We have that by Stolz-Cesaro
$$frac{a_n}{b_n}=frac{sum_{k=1}^{n}frac{(k+1)^{k}}{k^{k-1}}}{n^2}$$
$$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^{n}}}{(n+1)^2-n^2}=frac{(n+2)^{n+1}}{(2n+1)(n+1)^{n}}=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}$$
answered Dec 4 at 14:43
gimusi
92.3k84495
92.3k84495
add a comment |
add a comment |
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
add a comment |
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
add a comment |
up vote
2
down vote
up vote
2
down vote
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
Hint: $$frac{(k+1)^k}{k^{k-1}} = k left(1+frac{1}{k}right)^k$$
and
$$ left(1+frac{1}{k}right)^k = expleft(k lnleft(1+frac{1}{k}right)right) = expleft(1 + O(1/k)right) = e + O(1/k)$$
Now, what can you say about $$sum_{k=1}^n k (e + O(1/k))$$
?
edited Dec 4 at 14:42
answered Dec 4 at 14:36
Robert Israel
316k23206457
316k23206457
add a comment |
add a comment |
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
3
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
Dec 4 at 14:55
add a comment |
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
3
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
Dec 4 at 14:55
add a comment |
up vote
1
down vote
up vote
1
down vote
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
Thanks to user xbh for the hint:
Using the Stolz-Cesàro theorem, we have:
$a_n=frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}$
$b_n=n^2$
Two monotone and increasing sequences.
Apply the theorem to get:
$frac{a_{n+1}-a_n}{b_{n+1}-b_n}=frac{frac{(n+2)^{n+1}}{(n+1)^n}}{2n+1}=frac{(n+2)(n+2)^{n}}{(2n+1)(n+1)^n}=frac{n+2}{2n+1}cdotleft(1+frac{n+2}{n+1}-1right)^n=frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}$
Then:
$lim_{ntoinfty}frac{1}{n^2}left(frac{2}{1}+frac{9}{2}+frac{64}{9}+cdots+frac{(n+1)^{n}}{n^{n-1}}right)=lim_{ntoinfty}frac{n+2}{2n+1}cdotleft[left(1+frac{1}{n+1}right)^{n+1}right]^{frac{1}{n+1}n}=frac{e}{2}$
answered Dec 4 at 14:48
user605734 MBS
1789
1789
3
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
Dec 4 at 14:55
add a comment |
3
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
Dec 4 at 14:55
3
3
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
Dec 4 at 14:55
Note that form here we don't need the extra exponent indeed we have simply $$=frac{n+1}{2n+1}left(frac{n+2}{n+1}right)^{n+1}=frac{n+1}{2n+1}left(1+frac{1}{n+1}right)^{n+1} to frac e 2$$
– gimusi
Dec 4 at 14:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3025640%2fevaluate-the-limit-of-lim-n-to-infty-frac1n2-left-frac21-frac9%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
You do not need to calculate the series. Also it is not valid to do so first. Try other things. Maybe Cesaro-Stolz theorem.
– xbh
Dec 4 at 14:22