Let $Delta ABC$ be a right triangle. Prove that $angle BEH=angle HCI$.











up vote
6
down vote

favorite
4












Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.





Let the intersection point of $CI$ and $BE$ be $X$.



So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.



Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$



Then I do not know how to get it, and that idea has not used $DE=DH$.



enter image description here










share|cite|improve this question




























    up vote
    6
    down vote

    favorite
    4












    Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.





    Let the intersection point of $CI$ and $BE$ be $X$.



    So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.



    Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$



    Then I do not know how to get it, and that idea has not used $DE=DH$.



    enter image description here










    share|cite|improve this question


























      up vote
      6
      down vote

      favorite
      4









      up vote
      6
      down vote

      favorite
      4






      4





      Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.





      Let the intersection point of $CI$ and $BE$ be $X$.



      So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.



      Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$



      Then I do not know how to get it, and that idea has not used $DE=DH$.



      enter image description here










      share|cite|improve this question















      Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.





      Let the intersection point of $CI$ and $BE$ be $X$.



      So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.



      Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$



      Then I do not know how to get it, and that idea has not used $DE=DH$.



      enter image description here







      geometry trigonometry euclidean-geometry triangle problem-solving






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 3 at 14:00









      Zvi

      3,875328




      3,875328










      asked Dec 2 at 13:57









      Nguyễn Duy Linh

      1608




      1608






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.



          enter image description here



          Let us first find the connection between $d$ and $delta$, they are not independent:



          $$BA=BD+DA$$



          $$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$



          $$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$



          Now apply law of sines to triangle $triangle BEH$:



          $$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          Solve for $varepsilon_1$ and you get:



          $$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$



          Now apply law of sines to triangle $triangle HCI$:



          $$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$



          $$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$



          Solve for $varepsilon_2$ and you get:



          $$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$



          Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:



          $$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$



          $$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=2cotgamma+cotdelta$$



          $$cotvarepsilon_2=cotvarepsilon_1$$



          Done.



          EDIT: Let me show how I got from (1') to (2)



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          $${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          $${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:



          $$cotvarepsilon_1-cotdelta=2cotgamma$$



          $$cotvarepsilon_1=2cotgamma+cotdelta$$



          ...which is (2). The same procedure will take you from (2') to (3).






          share|cite|improve this answer























          • Wow!! I am considering your answer. That is really sick with me, lol.
            – Nguyễn Duy Linh
            Dec 3 at 14:13










          • How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
            – Nguyễn Duy Linh
            Dec 4 at 11:09










          • @NguyễnDuyLinh I'll edit the answer in a moment.
            – Oldboy
            Dec 4 at 11:13











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022669%2flet-delta-abc-be-a-right-triangle-prove-that-angle-beh-angle-hci%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted










          Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.



          enter image description here



          Let us first find the connection between $d$ and $delta$, they are not independent:



          $$BA=BD+DA$$



          $$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$



          $$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$



          Now apply law of sines to triangle $triangle BEH$:



          $$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          Solve for $varepsilon_1$ and you get:



          $$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$



          Now apply law of sines to triangle $triangle HCI$:



          $$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$



          $$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$



          Solve for $varepsilon_2$ and you get:



          $$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$



          Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:



          $$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$



          $$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=2cotgamma+cotdelta$$



          $$cotvarepsilon_2=cotvarepsilon_1$$



          Done.



          EDIT: Let me show how I got from (1') to (2)



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          $${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          $${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:



          $$cotvarepsilon_1-cotdelta=2cotgamma$$



          $$cotvarepsilon_1=2cotgamma+cotdelta$$



          ...which is (2). The same procedure will take you from (2') to (3).






          share|cite|improve this answer























          • Wow!! I am considering your answer. That is really sick with me, lol.
            – Nguyễn Duy Linh
            Dec 3 at 14:13










          • How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
            – Nguyễn Duy Linh
            Dec 4 at 11:09










          • @NguyễnDuyLinh I'll edit the answer in a moment.
            – Oldboy
            Dec 4 at 11:13















          up vote
          2
          down vote



          accepted










          Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.



          enter image description here



          Let us first find the connection between $d$ and $delta$, they are not independent:



          $$BA=BD+DA$$



          $$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$



          $$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$



          Now apply law of sines to triangle $triangle BEH$:



          $$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          Solve for $varepsilon_1$ and you get:



          $$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$



          Now apply law of sines to triangle $triangle HCI$:



          $$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$



          $$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$



          Solve for $varepsilon_2$ and you get:



          $$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$



          Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:



          $$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$



          $$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=2cotgamma+cotdelta$$



          $$cotvarepsilon_2=cotvarepsilon_1$$



          Done.



          EDIT: Let me show how I got from (1') to (2)



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          $${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          $${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:



          $$cotvarepsilon_1-cotdelta=2cotgamma$$



          $$cotvarepsilon_1=2cotgamma+cotdelta$$



          ...which is (2). The same procedure will take you from (2') to (3).






          share|cite|improve this answer























          • Wow!! I am considering your answer. That is really sick with me, lol.
            – Nguyễn Duy Linh
            Dec 3 at 14:13










          • How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
            – Nguyễn Duy Linh
            Dec 4 at 11:09










          • @NguyễnDuyLinh I'll edit the answer in a moment.
            – Oldboy
            Dec 4 at 11:13













          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.



          enter image description here



          Let us first find the connection between $d$ and $delta$, they are not independent:



          $$BA=BD+DA$$



          $$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$



          $$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$



          Now apply law of sines to triangle $triangle BEH$:



          $$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          Solve for $varepsilon_1$ and you get:



          $$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$



          Now apply law of sines to triangle $triangle HCI$:



          $$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$



          $$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$



          Solve for $varepsilon_2$ and you get:



          $$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$



          Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:



          $$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$



          $$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=2cotgamma+cotdelta$$



          $$cotvarepsilon_2=cotvarepsilon_1$$



          Done.



          EDIT: Let me show how I got from (1') to (2)



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          $${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          $${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:



          $$cotvarepsilon_1-cotdelta=2cotgamma$$



          $$cotvarepsilon_1=2cotgamma+cotdelta$$



          ...which is (2). The same procedure will take you from (2') to (3).






          share|cite|improve this answer














          Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.



          enter image description here



          Let us first find the connection between $d$ and $delta$, they are not independent:



          $$BA=BD+DA$$



          $$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$



          $$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$



          Now apply law of sines to triangle $triangle BEH$:



          $$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          Solve for $varepsilon_1$ and you get:



          $$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$



          Now apply law of sines to triangle $triangle HCI$:



          $$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$



          $$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$



          Solve for $varepsilon_2$ and you get:



          $$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$



          Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:



          $$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$



          $$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$



          $$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$



          $$cotvarepsilon_2=2cotgamma+cotdelta$$



          $$cotvarepsilon_2=cotvarepsilon_1$$



          Done.



          EDIT: Let me show how I got from (1') to (2)



          $$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$



          $${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          $${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$



          Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:



          $$cotvarepsilon_1-cotdelta=2cotgamma$$



          $$cotvarepsilon_1=2cotgamma+cotdelta$$



          ...which is (2). The same procedure will take you from (2') to (3).







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 4 at 11:25

























          answered Dec 3 at 13:13









          Oldboy

          6,0081628




          6,0081628












          • Wow!! I am considering your answer. That is really sick with me, lol.
            – Nguyễn Duy Linh
            Dec 3 at 14:13










          • How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
            – Nguyễn Duy Linh
            Dec 4 at 11:09










          • @NguyễnDuyLinh I'll edit the answer in a moment.
            – Oldboy
            Dec 4 at 11:13


















          • Wow!! I am considering your answer. That is really sick with me, lol.
            – Nguyễn Duy Linh
            Dec 3 at 14:13










          • How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
            – Nguyễn Duy Linh
            Dec 4 at 11:09










          • @NguyễnDuyLinh I'll edit the answer in a moment.
            – Oldboy
            Dec 4 at 11:13
















          Wow!! I am considering your answer. That is really sick with me, lol.
          – Nguyễn Duy Linh
          Dec 3 at 14:13




          Wow!! I am considering your answer. That is really sick with me, lol.
          – Nguyễn Duy Linh
          Dec 3 at 14:13












          How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
          – Nguyễn Duy Linh
          Dec 4 at 11:09




          How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
          – Nguyễn Duy Linh
          Dec 4 at 11:09












          @NguyễnDuyLinh I'll edit the answer in a moment.
          – Oldboy
          Dec 4 at 11:13




          @NguyễnDuyLinh I'll edit the answer in a moment.
          – Oldboy
          Dec 4 at 11:13


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022669%2flet-delta-abc-be-a-right-triangle-prove-that-angle-beh-angle-hci%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna