Let $Delta ABC$ be a right triangle. Prove that $angle BEH=angle HCI$.
up vote
6
down vote
favorite
Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.
Let the intersection point of $CI$ and $BE$ be $X$.
So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.
Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$
Then I do not know how to get it, and that idea has not used $DE=DH$.
geometry trigonometry euclidean-geometry triangle problem-solving
add a comment |
up vote
6
down vote
favorite
Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.
Let the intersection point of $CI$ and $BE$ be $X$.
So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.
Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$
Then I do not know how to get it, and that idea has not used $DE=DH$.
geometry trigonometry euclidean-geometry triangle problem-solving
add a comment |
up vote
6
down vote
favorite
up vote
6
down vote
favorite
Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.
Let the intersection point of $CI$ and $BE$ be $X$.
So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.
Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$
Then I do not know how to get it, and that idea has not used $DE=DH$.
geometry trigonometry euclidean-geometry triangle problem-solving
Let $Delta ABC$ is a right triangle. $D$ is chosen arbitrarily in $AB$,the segment $DH$ is perpendicular to the segment $BC$ at $H$, $Ein AC$ such that $DE=DH$. $I$ is the midpoint of $HE$. Prove that $angle BEH=angle HCI$.
Let the intersection point of $CI$ and $BE$ be $X$.
So we need to prove that $angle HCX=angle XEH$ or $XECH$ is a cyclic quadrilateral.
Or $Delta BHX$ and $BEC$ are similar triangles (side-angle-side) $$Leftrightarrow frac{BE}{BC}=frac{BH}{BX}.$$
Then I do not know how to get it, and that idea has not used $DE=DH$.
geometry trigonometry euclidean-geometry triangle problem-solving
geometry trigonometry euclidean-geometry triangle problem-solving
edited Dec 3 at 14:00
Zvi
3,875328
3,875328
asked Dec 2 at 13:57
Nguyễn Duy Linh
1608
1608
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.
Let us first find the connection between $d$ and $delta$, they are not independent:
$$BA=BD+DA$$
$$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$
$$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$
Now apply law of sines to triangle $triangle BEH$:
$$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
Solve for $varepsilon_1$ and you get:
$$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$
Now apply law of sines to triangle $triangle HCI$:
$$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$
$$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$
Solve for $varepsilon_2$ and you get:
$$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$
Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:
$$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$
$$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=2cotgamma+cotdelta$$
$$cotvarepsilon_2=cotvarepsilon_1$$
Done.
EDIT: Let me show how I got from (1') to (2)
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
$${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
$${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:
$$cotvarepsilon_1-cotdelta=2cotgamma$$
$$cotvarepsilon_1=2cotgamma+cotdelta$$
...which is (2). The same procedure will take you from (2') to (3).
Wow!! I am considering your answer. That is really sick with me, lol.
– Nguyễn Duy Linh
Dec 3 at 14:13
How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
– Nguyễn Duy Linh
Dec 4 at 11:09
@NguyễnDuyLinh I'll edit the answer in a moment.
– Oldboy
Dec 4 at 11:13
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.
Let us first find the connection between $d$ and $delta$, they are not independent:
$$BA=BD+DA$$
$$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$
$$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$
Now apply law of sines to triangle $triangle BEH$:
$$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
Solve for $varepsilon_1$ and you get:
$$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$
Now apply law of sines to triangle $triangle HCI$:
$$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$
$$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$
Solve for $varepsilon_2$ and you get:
$$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$
Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:
$$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$
$$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=2cotgamma+cotdelta$$
$$cotvarepsilon_2=cotvarepsilon_1$$
Done.
EDIT: Let me show how I got from (1') to (2)
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
$${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
$${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:
$$cotvarepsilon_1-cotdelta=2cotgamma$$
$$cotvarepsilon_1=2cotgamma+cotdelta$$
...which is (2). The same procedure will take you from (2') to (3).
Wow!! I am considering your answer. That is really sick with me, lol.
– Nguyễn Duy Linh
Dec 3 at 14:13
How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
– Nguyễn Duy Linh
Dec 4 at 11:09
@NguyễnDuyLinh I'll edit the answer in a moment.
– Oldboy
Dec 4 at 11:13
add a comment |
up vote
2
down vote
accepted
Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.
Let us first find the connection between $d$ and $delta$, they are not independent:
$$BA=BD+DA$$
$$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$
$$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$
Now apply law of sines to triangle $triangle BEH$:
$$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
Solve for $varepsilon_1$ and you get:
$$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$
Now apply law of sines to triangle $triangle HCI$:
$$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$
$$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$
Solve for $varepsilon_2$ and you get:
$$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$
Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:
$$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$
$$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=2cotgamma+cotdelta$$
$$cotvarepsilon_2=cotvarepsilon_1$$
Done.
EDIT: Let me show how I got from (1') to (2)
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
$${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
$${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:
$$cotvarepsilon_1-cotdelta=2cotgamma$$
$$cotvarepsilon_1=2cotgamma+cotdelta$$
...which is (2). The same procedure will take you from (2') to (3).
Wow!! I am considering your answer. That is really sick with me, lol.
– Nguyễn Duy Linh
Dec 3 at 14:13
How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
– Nguyễn Duy Linh
Dec 4 at 11:09
@NguyễnDuyLinh I'll edit the answer in a moment.
– Oldboy
Dec 4 at 11:13
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.
Let us first find the connection between $d$ and $delta$, they are not independent:
$$BA=BD+DA$$
$$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$
$$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$
Now apply law of sines to triangle $triangle BEH$:
$$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
Solve for $varepsilon_1$ and you get:
$$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$
Now apply law of sines to triangle $triangle HCI$:
$$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$
$$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$
Solve for $varepsilon_2$ and you get:
$$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$
Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:
$$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$
$$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=2cotgamma+cotdelta$$
$$cotvarepsilon_2=cotvarepsilon_1$$
Done.
EDIT: Let me show how I got from (1') to (2)
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
$${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
$${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:
$$cotvarepsilon_1-cotdelta=2cotgamma$$
$$cotvarepsilon_1=2cotgamma+cotdelta$$
...which is (2). The same procedure will take you from (2') to (3).
Introduce $varepsilon_1=angle BEH$, $varepsilon_2=angle HCI$, $d=DH=DE$, $gamma=angle C$, $delta=angle HDI=angle EDI$, $a=BC$. We need to prove that $varepsilon_1=varepsilon_2$.
Let us first find the connection between $d$ and $delta$, they are not independent:
$$BA=BD+DA$$
$$asingamma=frac{d}{cosgamma}+dcos(pi-2delta-gamma)=frac{d}{cosgamma}-dcos(2delta+gamma)$$
$$frac ad=frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}tag{1}$$
Now apply law of sines to triangle $triangle BEH$:
$$frac{BH}{sinvarepsilon_1}=frac{HE}{sin(delta-varepsilon_1)}$$
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
Solve for $varepsilon_1$ and you get:
$$cotvarepsilon_1=2cotgamma+cotdeltatag{2}$$
Now apply law of sines to triangle $triangle HCI$:
$$frac{HI}{sinvarepsilon_2}=frac{HC}{sin(pi-delta-varepsilon_2)}=frac{BC-BH}{sin(delta+varepsilon_2)}$$
$$frac{dsinbeta}{sinvarepsilon_2}=frac{a-dtangamma}{sin(delta+varepsilon_2)}tag{2'}$$
Solve for $varepsilon_2$ and you get:
$$cotvarepsilon_2=frac{frac ad-tangamma}{sin^2delta}-cotdeltatag{3}$$
Now replace (1) into (3). The expression has to evolve into (2), assuming that the problem statement is true. In the beginning it looks pretty much hopeless but if you survive the first few lines, you will be quickly rewarded:
$$cotvarepsilon_2=frac{frac{1-cosgammacos(2delta+gamma)}{singammacosgamma}-tangamma}{sin^2delta}-cotdelta$$
$$cotvarepsilon_2=frac{1-cosgammacos(2delta+gamma)-sin^2gamma}{sin^2deltasingammacosgamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta+gamma)}{sin^2deltasingamma}-frac{cosdelta}{sindelta}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma+sin(2delta)singamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-cos(2delta)cosgamma}{sin^2deltasingamma}+frac{2sindeltacosdeltasingamma-sindeltacosdeltasingamma}{sin^2deltasingamma}$$
$$cotvarepsilon_2=frac{cosgamma-(2cos^2delta-1)cosgamma}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=frac{2cosgamma(1-cos^2delta)}{sin^2deltasingamma}+cotdelta$$
$$cotvarepsilon_2=2cotgamma+cotdelta$$
$$cotvarepsilon_2=cotvarepsilon_1$$
Done.
EDIT: Let me show how I got from (1') to (2)
$$frac{dtangamma}{sinvarepsilon_1}=frac{2dsindelta}{sin(delta-varepsilon_1)}tag{1'}$$
$${tangamma}{sin(delta-varepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
$${tangamma}{(sindeltacosvarepsilon_1-cosdeltasinvarepsilon_1)}={2sindelta}{sinvarepsilon_1}$$
Now divide both sides with ${sindelta}{sinvarepsilon_1}{tangamma}$:
$$cotvarepsilon_1-cotdelta=2cotgamma$$
$$cotvarepsilon_1=2cotgamma+cotdelta$$
...which is (2). The same procedure will take you from (2') to (3).
edited Dec 4 at 11:25
answered Dec 3 at 13:13
Oldboy
6,0081628
6,0081628
Wow!! I am considering your answer. That is really sick with me, lol.
– Nguyễn Duy Linh
Dec 3 at 14:13
How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
– Nguyễn Duy Linh
Dec 4 at 11:09
@NguyễnDuyLinh I'll edit the answer in a moment.
– Oldboy
Dec 4 at 11:13
add a comment |
Wow!! I am considering your answer. That is really sick with me, lol.
– Nguyễn Duy Linh
Dec 3 at 14:13
How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
– Nguyễn Duy Linh
Dec 4 at 11:09
@NguyễnDuyLinh I'll edit the answer in a moment.
– Oldboy
Dec 4 at 11:13
Wow!! I am considering your answer. That is really sick with me, lol.
– Nguyễn Duy Linh
Dec 3 at 14:13
Wow!! I am considering your answer. That is really sick with me, lol.
– Nguyễn Duy Linh
Dec 3 at 14:13
How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
– Nguyễn Duy Linh
Dec 4 at 11:09
How can we get $cotvarepsilon_1=2cotgamma+cotdeltatag{2}$ ?
– Nguyễn Duy Linh
Dec 4 at 11:09
@NguyễnDuyLinh I'll edit the answer in a moment.
– Oldboy
Dec 4 at 11:13
@NguyễnDuyLinh I'll edit the answer in a moment.
– Oldboy
Dec 4 at 11:13
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022669%2flet-delta-abc-be-a-right-triangle-prove-that-angle-beh-angle-hci%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown