Prove that integral of $ 1-cosleft(frac{1}{x^2}right) $ is finite











up vote
0
down vote

favorite












I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$



My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.



So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$



but I'm not sure. I would appreciate any tips or hints.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    I need to prove that
    $$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$



    My attempt:
    $$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
    Using L'Hôpital's rule I can show that:
    $$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
    Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.



    So I think that, there exist $N in mathbb{N} $ such that:
    $$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$



    but I'm not sure. I would appreciate any tips or hints.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I need to prove that
      $$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$



      My attempt:
      $$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
      Using L'Hôpital's rule I can show that:
      $$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
      Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.



      So I think that, there exist $N in mathbb{N} $ such that:
      $$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$



      but I'm not sure. I would appreciate any tips or hints.










      share|cite|improve this question















      I need to prove that
      $$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$



      My attempt:
      $$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
      Using L'Hôpital's rule I can show that:
      $$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
      Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.



      So I think that, there exist $N in mathbb{N} $ such that:
      $$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$



      but I'm not sure. I would appreciate any tips or hints.







      calculus integration proof-verification






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 2 at 14:34









      Larry

      1,2522722




      1,2522722










      asked Dec 2 at 14:01









      Wywana

      314




      314






















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          Use the substitution $1/x=t$, so the integral becomes
          $$
          int_0^{infty} frac{1-cos(t^2)}{t^2},dt
          $$

          Since
          $$
          lim_{tto0}frac{1-cos(t^2)}{t^2}=0
          $$

          convergence is not an issue at $0$. Since
          $$
          0le 1-cos(t^2)le 2
          $$

          we have that, for $tge1$,
          $$
          0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
          $$

          Now show convergence of
          $$
          int_1^infty frac{2}{t^2},dt
          $$






          share|cite|improve this answer




























            up vote
            3
            down vote













            $$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
            where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:



            $$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
            leads to $I=color{red}{sqrt{frac{pi}{2}}}$.






            share|cite|improve this answer




























              up vote
              1
              down vote













              $int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$






              share|cite|improve this answer




























                up vote
                1
                down vote













                One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get



                begin{multline}
                int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
                \ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
                end{multline}



                Since both integrals are of bounded functions over a finite range, they must be finite.






                share|cite|improve this answer





















                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022672%2fprove-that-integral-of-1-cos-left-frac1x2-right-is-finite%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes








                  up vote
                  2
                  down vote



                  accepted










                  Use the substitution $1/x=t$, so the integral becomes
                  $$
                  int_0^{infty} frac{1-cos(t^2)}{t^2},dt
                  $$

                  Since
                  $$
                  lim_{tto0}frac{1-cos(t^2)}{t^2}=0
                  $$

                  convergence is not an issue at $0$. Since
                  $$
                  0le 1-cos(t^2)le 2
                  $$

                  we have that, for $tge1$,
                  $$
                  0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
                  $$

                  Now show convergence of
                  $$
                  int_1^infty frac{2}{t^2},dt
                  $$






                  share|cite|improve this answer

























                    up vote
                    2
                    down vote



                    accepted










                    Use the substitution $1/x=t$, so the integral becomes
                    $$
                    int_0^{infty} frac{1-cos(t^2)}{t^2},dt
                    $$

                    Since
                    $$
                    lim_{tto0}frac{1-cos(t^2)}{t^2}=0
                    $$

                    convergence is not an issue at $0$. Since
                    $$
                    0le 1-cos(t^2)le 2
                    $$

                    we have that, for $tge1$,
                    $$
                    0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
                    $$

                    Now show convergence of
                    $$
                    int_1^infty frac{2}{t^2},dt
                    $$






                    share|cite|improve this answer























                      up vote
                      2
                      down vote



                      accepted







                      up vote
                      2
                      down vote



                      accepted






                      Use the substitution $1/x=t$, so the integral becomes
                      $$
                      int_0^{infty} frac{1-cos(t^2)}{t^2},dt
                      $$

                      Since
                      $$
                      lim_{tto0}frac{1-cos(t^2)}{t^2}=0
                      $$

                      convergence is not an issue at $0$. Since
                      $$
                      0le 1-cos(t^2)le 2
                      $$

                      we have that, for $tge1$,
                      $$
                      0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
                      $$

                      Now show convergence of
                      $$
                      int_1^infty frac{2}{t^2},dt
                      $$






                      share|cite|improve this answer












                      Use the substitution $1/x=t$, so the integral becomes
                      $$
                      int_0^{infty} frac{1-cos(t^2)}{t^2},dt
                      $$

                      Since
                      $$
                      lim_{tto0}frac{1-cos(t^2)}{t^2}=0
                      $$

                      convergence is not an issue at $0$. Since
                      $$
                      0le 1-cos(t^2)le 2
                      $$

                      we have that, for $tge1$,
                      $$
                      0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
                      $$

                      Now show convergence of
                      $$
                      int_1^infty frac{2}{t^2},dt
                      $$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 2 at 15:22









                      egreg

                      175k1383198




                      175k1383198






















                          up vote
                          3
                          down vote













                          $$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
                          where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:



                          $$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
                          leads to $I=color{red}{sqrt{frac{pi}{2}}}$.






                          share|cite|improve this answer

























                            up vote
                            3
                            down vote













                            $$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
                            where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:



                            $$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
                            leads to $I=color{red}{sqrt{frac{pi}{2}}}$.






                            share|cite|improve this answer























                              up vote
                              3
                              down vote










                              up vote
                              3
                              down vote









                              $$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
                              where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:



                              $$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
                              leads to $I=color{red}{sqrt{frac{pi}{2}}}$.






                              share|cite|improve this answer












                              $$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
                              where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:



                              $$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
                              leads to $I=color{red}{sqrt{frac{pi}{2}}}$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 2 at 17:24









                              Jack D'Aurizio

                              284k33275654




                              284k33275654






















                                  up vote
                                  1
                                  down vote













                                  $int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$






                                  share|cite|improve this answer

























                                    up vote
                                    1
                                    down vote













                                    $int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$






                                    share|cite|improve this answer























                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      $int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$






                                      share|cite|improve this answer












                                      $int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 2 at 14:22









                                      John_Wick

                                      1,154111




                                      1,154111






















                                          up vote
                                          1
                                          down vote













                                          One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get



                                          begin{multline}
                                          int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
                                          \ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
                                          end{multline}



                                          Since both integrals are of bounded functions over a finite range, they must be finite.






                                          share|cite|improve this answer

























                                            up vote
                                            1
                                            down vote













                                            One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get



                                            begin{multline}
                                            int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
                                            \ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
                                            end{multline}



                                            Since both integrals are of bounded functions over a finite range, they must be finite.






                                            share|cite|improve this answer























                                              up vote
                                              1
                                              down vote










                                              up vote
                                              1
                                              down vote









                                              One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get



                                              begin{multline}
                                              int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
                                              \ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
                                              end{multline}



                                              Since both integrals are of bounded functions over a finite range, they must be finite.






                                              share|cite|improve this answer












                                              One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get



                                              begin{multline}
                                              int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
                                              \ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
                                              end{multline}



                                              Since both integrals are of bounded functions over a finite range, they must be finite.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Dec 2 at 14:49









                                              eyeballfrog

                                              5,808628




                                              5,808628






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.





                                                  Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                  Please pay close attention to the following guidance:


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022672%2fprove-that-integral-of-1-cos-left-frac1x2-right-is-finite%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Bressuire

                                                  Cabo Verde

                                                  Gyllenstierna