Prove that integral of $ 1-cosleft(frac{1}{x^2}right) $ is finite
up vote
0
down vote
favorite
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
add a comment |
up vote
0
down vote
favorite
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
I need to prove that
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right) dx < infty $$
My attempt:
$$ forall xin[0,infty] hspace{1cm} 0 < 1 - cosleft(frac{1}{x^2}right) < 2 tag{1}. $$
Using L'Hôpital's rule I can show that:
$$ 1 - cosleft(frac{1}{x^2}right) underset{x to infty}{sim} frac{1}{2x^4} tag{2} $$
Which means that $ 1 - cosleft(frac{1}{x^2}right)$ behaves like $ frac{1}{2x^4} $ when $ x to infty $.
So I think that, there exist $N in mathbb{N} $ such that:
$$ int_0^{infty} left(1 - cosleft(frac{1}{x^2}right)right)dx < int_0^{N} 2dx + int_N^{infty} frac{1}{x^4}dx < infty $$
but I'm not sure. I would appreciate any tips or hints.
calculus integration proof-verification
calculus integration proof-verification
edited Dec 2 at 14:34
Larry
1,2522722
1,2522722
asked Dec 2 at 14:01
Wywana
314
314
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
2
down vote
accepted
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
add a comment |
up vote
3
down vote
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
add a comment |
up vote
1
down vote
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
add a comment |
up vote
1
down vote
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
add a comment |
up vote
2
down vote
accepted
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
Use the substitution $1/x=t$, so the integral becomes
$$
int_0^{infty} frac{1-cos(t^2)}{t^2},dt
$$
Since
$$
lim_{tto0}frac{1-cos(t^2)}{t^2}=0
$$
convergence is not an issue at $0$. Since
$$
0le 1-cos(t^2)le 2
$$
we have that, for $tge1$,
$$
0lefrac{1-cos(t^2)}{t^2}lefrac{2}{t^2}
$$
Now show convergence of
$$
int_1^infty frac{2}{t^2},dt
$$
answered Dec 2 at 15:22
egreg
175k1383198
175k1383198
add a comment |
add a comment |
up vote
3
down vote
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
add a comment |
up vote
3
down vote
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
add a comment |
up vote
3
down vote
up vote
3
down vote
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
$$I=int_{0}^{+infty}left[1-cosleft(tfrac{1}{x^2}right)right],dx stackrel{xmapsto 1/x}{=} int_{0}^{+infty}frac{1-cos(x^2)}{x^2},dx $$
where the function $frac{1-cos(x^2)}{x^2}$ is continuous and bounded over $(0,1]$, non-negative and bounded by $frac{2}{x^2}$ over $[1,+infty)$. It follows that the above integral is finite. Its value can be found through the Laplace transform:
$$int_{0}^{+infty}frac{1-cos x}{2xsqrt{x}},dx!stackrel{text{IBP}}{=}!int_{0}^{+infty}frac{sin x}{sqrt{x}},dx!stackrel{mathcal{L}}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{ds}{(s^2+1)sqrt{s}}!stackrel{smapsto t^2}{=}!frac{1}{sqrt{pi}}!int_{0}^{+infty}frac{2,dt}{t^4+1} $$
leads to $I=color{red}{sqrt{frac{pi}{2}}}$.
answered Dec 2 at 17:24
Jack D'Aurizio
284k33275654
284k33275654
add a comment |
add a comment |
up vote
1
down vote
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
add a comment |
up vote
1
down vote
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
add a comment |
up vote
1
down vote
up vote
1
down vote
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
$int_0^infty(1-cos (1/x^2))dx= int_0^1(1-cos (1/x^2))dx+int_1^infty(1-cos (1/x^2))dxleq 2+int_1^infty2sin^2 left(frac{1}{2x^2}right)dxleq 2+int_1^infty2sin left(frac{1}{2x^2}right)dxleq2+int_1^infty2 frac{1}{2x^2}dx text{ (as } sin xleq x text{ forall } x>0) =2+int_1^infty frac{1}{x^2}dx .$
answered Dec 2 at 14:22
John_Wick
1,154111
1,154111
add a comment |
add a comment |
up vote
1
down vote
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
add a comment |
up vote
1
down vote
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
add a comment |
up vote
1
down vote
up vote
1
down vote
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
One way is to use $ 1 - costheta = 2sin^2theta$ and $u = x^{-2}$ to get
begin{multline}
int_0^inftyleft[1-cos(x^{-2})right]dx = int_0^1 2sin^2(x^{-2})dx + int_1^infty 2sin^2(u)frac{du}{2u^{3/2}}
\ = 2int_0^1sin^2(x^{-2})dx +int_0^1 u^{1/2}left[frac{sin(u)}{u}right]^2 du
end{multline}
Since both integrals are of bounded functions over a finite range, they must be finite.
answered Dec 2 at 14:49
eyeballfrog
5,808628
5,808628
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022672%2fprove-that-integral-of-1-cos-left-frac1x2-right-is-finite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown