Measurable function on Ω
up vote
0
down vote
favorite
$M( Omega, mathbf{R}^{+})$ is the set of measurable function on $Omega $.
let $mu ( Omega) < infty $ and $f in M( Omega, mathbf{R}^{+})$.
How can I show that?
$f$ is integrable function if only if the series $ Sigma_{n = 1}^{infty} mu ( E_n)$ is convergence, so that $E_n = { x in Omega : f(x) geq n }$.
real-analysis functional-analysis
add a comment |
up vote
0
down vote
favorite
$M( Omega, mathbf{R}^{+})$ is the set of measurable function on $Omega $.
let $mu ( Omega) < infty $ and $f in M( Omega, mathbf{R}^{+})$.
How can I show that?
$f$ is integrable function if only if the series $ Sigma_{n = 1}^{infty} mu ( E_n)$ is convergence, so that $E_n = { x in Omega : f(x) geq n }$.
real-analysis functional-analysis
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$M( Omega, mathbf{R}^{+})$ is the set of measurable function on $Omega $.
let $mu ( Omega) < infty $ and $f in M( Omega, mathbf{R}^{+})$.
How can I show that?
$f$ is integrable function if only if the series $ Sigma_{n = 1}^{infty} mu ( E_n)$ is convergence, so that $E_n = { x in Omega : f(x) geq n }$.
real-analysis functional-analysis
$M( Omega, mathbf{R}^{+})$ is the set of measurable function on $Omega $.
let $mu ( Omega) < infty $ and $f in M( Omega, mathbf{R}^{+})$.
How can I show that?
$f$ is integrable function if only if the series $ Sigma_{n = 1}^{infty} mu ( E_n)$ is convergence, so that $E_n = { x in Omega : f(x) geq n }$.
real-analysis functional-analysis
real-analysis functional-analysis
asked Dec 2 at 13:56
joe
874
874
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
Let $g=sum_{n=1}^{infty}mathsf1_{E_n}$ and $h=sum_{n=0}^{infty}mathsf1_{E_n}$.
Then $h(x)=g(x)+1$ and $gleq fleq h$ so that: $$int g;dmuleqint f;dmuleqint h;dmu$$
or equivalently: $$sum_{n=1}^{infty}mu(E_n)leqint f;dmuleqsum_{n=1}^{infty}mu(E_n)+mu(Omega)$$
Since $mu(Omega)<infty$ this justifies the conclusion that $$int f;dmu<inftyiffsum_{n=1}^{infty}mu(E_n)<infty$$
what do you mean about "$g=sum_{n=1}^{infty}mathsf1_{E_n}$ "?
– joe
Dec 2 at 14:41
Do you mean $g=sum_{n=1}^{infty}mathsfchi_{E_n}$
– joe
Dec 2 at 14:42
Yes, that is another notation for it.
– drhab
Dec 2 at 14:45
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Let $g=sum_{n=1}^{infty}mathsf1_{E_n}$ and $h=sum_{n=0}^{infty}mathsf1_{E_n}$.
Then $h(x)=g(x)+1$ and $gleq fleq h$ so that: $$int g;dmuleqint f;dmuleqint h;dmu$$
or equivalently: $$sum_{n=1}^{infty}mu(E_n)leqint f;dmuleqsum_{n=1}^{infty}mu(E_n)+mu(Omega)$$
Since $mu(Omega)<infty$ this justifies the conclusion that $$int f;dmu<inftyiffsum_{n=1}^{infty}mu(E_n)<infty$$
what do you mean about "$g=sum_{n=1}^{infty}mathsf1_{E_n}$ "?
– joe
Dec 2 at 14:41
Do you mean $g=sum_{n=1}^{infty}mathsfchi_{E_n}$
– joe
Dec 2 at 14:42
Yes, that is another notation for it.
– drhab
Dec 2 at 14:45
add a comment |
up vote
1
down vote
Let $g=sum_{n=1}^{infty}mathsf1_{E_n}$ and $h=sum_{n=0}^{infty}mathsf1_{E_n}$.
Then $h(x)=g(x)+1$ and $gleq fleq h$ so that: $$int g;dmuleqint f;dmuleqint h;dmu$$
or equivalently: $$sum_{n=1}^{infty}mu(E_n)leqint f;dmuleqsum_{n=1}^{infty}mu(E_n)+mu(Omega)$$
Since $mu(Omega)<infty$ this justifies the conclusion that $$int f;dmu<inftyiffsum_{n=1}^{infty}mu(E_n)<infty$$
what do you mean about "$g=sum_{n=1}^{infty}mathsf1_{E_n}$ "?
– joe
Dec 2 at 14:41
Do you mean $g=sum_{n=1}^{infty}mathsfchi_{E_n}$
– joe
Dec 2 at 14:42
Yes, that is another notation for it.
– drhab
Dec 2 at 14:45
add a comment |
up vote
1
down vote
up vote
1
down vote
Let $g=sum_{n=1}^{infty}mathsf1_{E_n}$ and $h=sum_{n=0}^{infty}mathsf1_{E_n}$.
Then $h(x)=g(x)+1$ and $gleq fleq h$ so that: $$int g;dmuleqint f;dmuleqint h;dmu$$
or equivalently: $$sum_{n=1}^{infty}mu(E_n)leqint f;dmuleqsum_{n=1}^{infty}mu(E_n)+mu(Omega)$$
Since $mu(Omega)<infty$ this justifies the conclusion that $$int f;dmu<inftyiffsum_{n=1}^{infty}mu(E_n)<infty$$
Let $g=sum_{n=1}^{infty}mathsf1_{E_n}$ and $h=sum_{n=0}^{infty}mathsf1_{E_n}$.
Then $h(x)=g(x)+1$ and $gleq fleq h$ so that: $$int g;dmuleqint f;dmuleqint h;dmu$$
or equivalently: $$sum_{n=1}^{infty}mu(E_n)leqint f;dmuleqsum_{n=1}^{infty}mu(E_n)+mu(Omega)$$
Since $mu(Omega)<infty$ this justifies the conclusion that $$int f;dmu<inftyiffsum_{n=1}^{infty}mu(E_n)<infty$$
answered Dec 2 at 14:15
drhab
95.3k543126
95.3k543126
what do you mean about "$g=sum_{n=1}^{infty}mathsf1_{E_n}$ "?
– joe
Dec 2 at 14:41
Do you mean $g=sum_{n=1}^{infty}mathsfchi_{E_n}$
– joe
Dec 2 at 14:42
Yes, that is another notation for it.
– drhab
Dec 2 at 14:45
add a comment |
what do you mean about "$g=sum_{n=1}^{infty}mathsf1_{E_n}$ "?
– joe
Dec 2 at 14:41
Do you mean $g=sum_{n=1}^{infty}mathsfchi_{E_n}$
– joe
Dec 2 at 14:42
Yes, that is another notation for it.
– drhab
Dec 2 at 14:45
what do you mean about "$g=sum_{n=1}^{infty}mathsf1_{E_n}$ "?
– joe
Dec 2 at 14:41
what do you mean about "$g=sum_{n=1}^{infty}mathsf1_{E_n}$ "?
– joe
Dec 2 at 14:41
Do you mean $g=sum_{n=1}^{infty}mathsfchi_{E_n}$
– joe
Dec 2 at 14:42
Do you mean $g=sum_{n=1}^{infty}mathsfchi_{E_n}$
– joe
Dec 2 at 14:42
Yes, that is another notation for it.
– drhab
Dec 2 at 14:45
Yes, that is another notation for it.
– drhab
Dec 2 at 14:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022667%2fmeasurable-function-on-%25ce%25a9%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown