$int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$???












4












$begingroup$


I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.



$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    "The trap is set, now we wait (for Jack)."
    $endgroup$
    – Clement C.
    Dec 30 '18 at 8:47






  • 2




    $begingroup$
    Substitute $cos x=t$ and use the derivatives of Beta function.
    $endgroup$
    – Kemono Chen
    Dec 30 '18 at 8:50
















4












$begingroup$


I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.



$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    "The trap is set, now we wait (for Jack)."
    $endgroup$
    – Clement C.
    Dec 30 '18 at 8:47






  • 2




    $begingroup$
    Substitute $cos x=t$ and use the derivatives of Beta function.
    $endgroup$
    – Kemono Chen
    Dec 30 '18 at 8:50














4












4








4





$begingroup$


I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.



$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.










share|cite|improve this question









$endgroup$




I saw in a paper by @Jack D'aurizio the following integral
$$I=int_0^{pi/2}log^2(cos^2x)mathrm{d}x=frac{pi^3}6+2pilog^2(2)$$
Below is my attempt.



$$I=4int_0^{pi/2}log^2(cos x)mathrm{d}x$$
Then we define
$$F(a)=int_0^{pi/2}log^2(acos x)mathrm{d}x$$
So we have
$$F'(a)=frac2aint_0^{pi/2}log(acos x)mathrm{d}x$$
Which I do not know how to compute. How do I proceed? Thanks.







integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 30 '18 at 8:44









clathratusclathratus

4,715337




4,715337








  • 3




    $begingroup$
    "The trap is set, now we wait (for Jack)."
    $endgroup$
    – Clement C.
    Dec 30 '18 at 8:47






  • 2




    $begingroup$
    Substitute $cos x=t$ and use the derivatives of Beta function.
    $endgroup$
    – Kemono Chen
    Dec 30 '18 at 8:50














  • 3




    $begingroup$
    "The trap is set, now we wait (for Jack)."
    $endgroup$
    – Clement C.
    Dec 30 '18 at 8:47






  • 2




    $begingroup$
    Substitute $cos x=t$ and use the derivatives of Beta function.
    $endgroup$
    – Kemono Chen
    Dec 30 '18 at 8:50








3




3




$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47




$begingroup$
"The trap is set, now we wait (for Jack)."
$endgroup$
– Clement C.
Dec 30 '18 at 8:47




2




2




$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50




$begingroup$
Substitute $cos x=t$ and use the derivatives of Beta function.
$endgroup$
– Kemono Chen
Dec 30 '18 at 8:50










5 Answers
5






active

oldest

votes


















3












$begingroup$

Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$



Hence we need $I''(0)$.



Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$



Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$



Substituting $a=0$ in above formula yields the answer.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}



    Observe that,



    begin{align}I&=4J\
    J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
    int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
    end{align}



    (change of variable $y=dfrac{pi}{2}-x$ )



    begin{align}
    K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
    &=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
    end{align}



    Perform the change of variable $y=2x$,



    begin{align}
    K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
    &=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
    end{align}



    In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,



    begin{align}
    K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
    &=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
    &=J
    end{align}



    On the other hand,



    begin{align}
    K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
    &=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
    &2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
    &=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
    end{align}



    begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}



    Perform the change of variable $x=tan y$,



    begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
    &=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
    &=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
    end{align}



    Therefore,



    begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
    end{align}



    Therefore (recall $K=J$),



    begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}



    On the other hand,



    begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}



    In the latter integral perform the change of variable $y=dfrac{1}{x}$,



    begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}



    But it is well known that,



    begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
    int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
    end{align}



    Therefore,



    begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
    &=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
    end{align}



    PS:
    See: https://math.stackexchange.com/a/2942594/186817



    (in this post i assume only the value of $zeta(4)$ )






    share|cite|improve this answer











    $endgroup$





















      2












      $begingroup$

      Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given



      $$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
      since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
      $$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$



      Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
      $$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
      which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Yeah you're gonna have to explain this a bit more
        $endgroup$
        – clathratus
        Dec 30 '18 at 9:51










      • $begingroup$
        @ClementC.: of course, now fixed.
        $endgroup$
        – Jack D'Aurizio
        Dec 30 '18 at 10:44










      • $begingroup$
        OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
        $endgroup$
        – Clement C.
        Dec 30 '18 at 10:57








      • 1




        $begingroup$
        @ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
        $endgroup$
        – Jack D'Aurizio
        Dec 30 '18 at 14:11










      • $begingroup$
        @JackDAurizio Ah. Thanks.
        $endgroup$
        – Clement C.
        Dec 30 '18 at 16:10



















      1












      $begingroup$

      Getting rid of the first roadblock:



      Use the fact that $$log(acos x) = log a + logcos x$$
      along with the result that
      $$
      int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
      $$

      to get
      $$
      F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
      $$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
        $endgroup$
        – Clement C.
        Dec 30 '18 at 8:58



















      1












      $begingroup$

      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$




      $ds{I equiv
      int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
      {pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$
      .




      begin{align}
      I & equiv
      bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
      ,,,stackrel{x mapsto pi/2 - x}{=},,,
      4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
      \[5mm] & =
      left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
      ,rightvert_{ z = exppars{ic x}}
      \[5mm] & =
      left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
      ,rightvert_{ z = exppars{ic x}}
      \[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
      -, 4,
      overbrace{Imint_{1}^{epsilon}ln^{2}
      pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
      \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
      4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
      \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
      -4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
      \[1cm] & =
      4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
      pars{{pi over 2} - theta}^{2}},ddtheta
      -4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
      {dd x over x}
      \[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
      bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
      bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
      4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
      \[5mm] & =
      bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
      bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
      2pilnpars{epsilon}lnpars{4epsilon}}
      \[5mm] & stackrel{mrm{as} epsilon to 0}{to}
      bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
      8.1865
      end{align}




      Note that
      $ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
      -,mrm{Li}pars{1} = -,{pi^{2} over 6}}$
      .







      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056623%2fint-0-pi-2-log2-cos2x-mathrmdx-frac-pi362-pi-log22%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$



        Hence we need $I''(0)$.



        Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$



        Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$



        Substituting $a=0$ in above formula yields the answer.






        share|cite|improve this answer









        $endgroup$


















          3












          $begingroup$

          Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$



          Hence we need $I''(0)$.



          Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$



          Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$



          Substituting $a=0$ in above formula yields the answer.






          share|cite|improve this answer









          $endgroup$
















            3












            3








            3





            $begingroup$

            Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$



            Hence we need $I''(0)$.



            Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$



            Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$



            Substituting $a=0$ in above formula yields the answer.






            share|cite|improve this answer









            $endgroup$



            Let $$I(a)=int_0^{frac {pi}{2}} (cos^2 x)^a dx$$



            Hence we need $I''(0)$.



            Now recalling the definition of Beta function we get $$I(a)=frac 12 Bleft(a+frac 12 ,frac 12right)=frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}$$



            Hence we have $$I''(a) =frac {sqrt {pi}}{2}frac {Gammaleft(a+frac 12right)}{Gamma(a+1)}left(left[psi^{(0)}left(a+frac 12 right)-psi^{(0)}(a+1)right]^2 +psi^{(1)}left(a+frac 12 right)-psi^{(1)}(a+1)right) $$



            Substituting $a=0$ in above formula yields the answer.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 30 '18 at 12:04









            DarkraiDarkrai

            6,2971441




            6,2971441























                2












                $begingroup$

                begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}



                Observe that,



                begin{align}I&=4J\
                J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
                int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
                end{align}



                (change of variable $y=dfrac{pi}{2}-x$ )



                begin{align}
                K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
                &=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
                end{align}



                Perform the change of variable $y=2x$,



                begin{align}
                K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
                &=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
                end{align}



                In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,



                begin{align}
                K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
                &=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
                &=J
                end{align}



                On the other hand,



                begin{align}
                K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
                &=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
                &2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                &=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                end{align}



                begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}



                Perform the change of variable $x=tan y$,



                begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
                &=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
                &=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                end{align}



                Therefore,



                begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
                end{align}



                Therefore (recall $K=J$),



                begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}



                On the other hand,



                begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}



                In the latter integral perform the change of variable $y=dfrac{1}{x}$,



                begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}



                But it is well known that,



                begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
                int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
                end{align}



                Therefore,



                begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
                &=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
                end{align}



                PS:
                See: https://math.stackexchange.com/a/2942594/186817



                (in this post i assume only the value of $zeta(4)$ )






                share|cite|improve this answer











                $endgroup$


















                  2












                  $begingroup$

                  begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}



                  Observe that,



                  begin{align}I&=4J\
                  J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
                  int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
                  end{align}



                  (change of variable $y=dfrac{pi}{2}-x$ )



                  begin{align}
                  K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
                  &=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
                  end{align}



                  Perform the change of variable $y=2x$,



                  begin{align}
                  K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
                  &=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
                  end{align}



                  In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,



                  begin{align}
                  K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
                  &=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
                  &=J
                  end{align}



                  On the other hand,



                  begin{align}
                  K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
                  &=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
                  &2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                  &=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                  end{align}



                  begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}



                  Perform the change of variable $x=tan y$,



                  begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
                  &=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
                  &=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                  end{align}



                  Therefore,



                  begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
                  end{align}



                  Therefore (recall $K=J$),



                  begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}



                  On the other hand,



                  begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}



                  In the latter integral perform the change of variable $y=dfrac{1}{x}$,



                  begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}



                  But it is well known that,



                  begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
                  int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
                  end{align}



                  Therefore,



                  begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
                  &=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
                  end{align}



                  PS:
                  See: https://math.stackexchange.com/a/2942594/186817



                  (in this post i assume only the value of $zeta(4)$ )






                  share|cite|improve this answer











                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}



                    Observe that,



                    begin{align}I&=4J\
                    J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
                    int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
                    end{align}



                    (change of variable $y=dfrac{pi}{2}-x$ )



                    begin{align}
                    K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
                    &=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
                    end{align}



                    Perform the change of variable $y=2x$,



                    begin{align}
                    K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
                    &=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
                    end{align}



                    In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,



                    begin{align}
                    K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
                    &=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
                    &=J
                    end{align}



                    On the other hand,



                    begin{align}
                    K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
                    &=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
                    &2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                    &=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                    end{align}



                    begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}



                    Perform the change of variable $x=tan y$,



                    begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
                    &=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
                    &=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                    end{align}



                    Therefore,



                    begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
                    end{align}



                    Therefore (recall $K=J$),



                    begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}



                    On the other hand,



                    begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}



                    In the latter integral perform the change of variable $y=dfrac{1}{x}$,



                    begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}



                    But it is well known that,



                    begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
                    int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
                    end{align}



                    Therefore,



                    begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
                    &=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
                    end{align}



                    PS:
                    See: https://math.stackexchange.com/a/2942594/186817



                    (in this post i assume only the value of $zeta(4)$ )






                    share|cite|improve this answer











                    $endgroup$



                    begin{align}J=int_0^{frac{pi}{2}} ln^2left(cos xright),dxend{align}



                    Observe that,



                    begin{align}I&=4J\
                    J&=int_0^{frac{pi}{2}} ln^2left(sin xright),dx\
                    int_0^{frac{pi}{2}} lnleft(sin xright),dx&=int_0^{frac{pi}{2}} lnleft(cos xright),dx
                    end{align}



                    (change of variable $y=dfrac{pi}{2}-x$ )



                    begin{align}
                    K&=int_0^{frac{pi}{2}} ln^2 left(2sin xcos xright),dx\
                    &=int_0^{frac{pi}{2}} ln^2 left(sinleft(2xright)right),dx\
                    end{align}



                    Perform the change of variable $y=2x$,



                    begin{align}
                    K&=frac{1}{2}int_0^{pi} ln^2 left(sin xright),dx\
                    &=frac{1}{2}int_0^{frac{pi}{2}} ln^2 left(sin xright),dx+frac{1}{2}int_{frac{pi}{2}}^pi ln^2 left(sin xright),dx\
                    end{align}



                    In the latter integral perform the change of variable $y=dfrac{pi}{2}-x$ and recall $sinleft(pi-xright)=sin x$ for $x$ real,



                    begin{align}
                    K&=int_0^{frac{pi}{2}} ln^2 left(sin xright),dx\
                    &=int_0^{frac{pi}{2}} ln^2 left(cos xright),dx\
                    &=J
                    end{align}



                    On the other hand,



                    begin{align}
                    K&=int_0^{frac{pi}{2}}left(ln 2+ln(sin x)+ln(cos x)right)^2 ,dx\
                    &=frac{pi}{2}ln^2 2+int_0^{frac{pi}{2}}ln^2(sin x),dx+int_0^{frac{pi}{2}}ln^2(cos x),dx+2ln 2int_0^{frac{pi}{2}}ln(cos x),dx+\
                    &2ln 2int_0^{frac{pi}{2}}ln(sin x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                    &=frac{pi}{2}ln^2 2+2J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx+2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                    end{align}



                    begin{align}L&=int_0^infty frac{ln^2 x}{1+x^2},dxend{align}



                    Perform the change of variable $x=tan y$,



                    begin{align}L&=int_0^{frac{pi}{2}} ln^2left(tan xright),dx\
                    &=int_0^{frac{pi}{2}}left(lnleft(sin xright)-lnleft(cos xright)right)^2,dx\
                    &=2J-2int_0^{frac{pi}{2}}ln(sin x)ln(cos x),dx\
                    end{align}



                    Therefore,



                    begin{align}K+L&=frac{pi}{2}ln^2 2+4J+4ln 2int_0^{frac{pi}{2}}ln(cos x),dx
                    end{align}



                    Therefore (recall $K=J$),



                    begin{align}J&=frac{1}{3}L-frac{pi}{6}ln^2 2-frac{4}{3}ln 2int_0^{frac{pi}{2}}ln(cos x),dxend{align}



                    On the other hand,



                    begin{align}L&=int_0^1 frac{ln^2 x}{1+x},dx+int_1^infty frac{ln^2 x}{1+x},dxend{align}



                    In the latter integral perform the change of variable $y=dfrac{1}{x}$,



                    begin{align}L&=2int_0^1 frac{ln^2 x}{1+x},dxend{align}



                    But it is well known that,



                    begin{align}int_0^1 frac{ln^2 x}{1+x^2},dx&=frac{pi^3}{16}\
                    int_0^{frac{pi}{2}}ln(cos x),dx&=-frac{1}{2}piln 2
                    end{align}



                    Therefore,



                    begin{align}J&=frac{pi^3}{24}-frac{pi}{6}ln^2 2-frac{4}{3}ln 2times -frac{1}{2}piln 2\
                    &=boxed{frac{pi^3}{24}+frac{1}{2}piln^2 2}\
                    end{align}



                    PS:
                    See: https://math.stackexchange.com/a/2942594/186817



                    (in this post i assume only the value of $zeta(4)$ )







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Dec 31 '18 at 10:44

























                    answered Dec 31 '18 at 10:31









                    FDPFDP

                    5,63211526




                    5,63211526























                        2












                        $begingroup$

                        Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given



                        $$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
                        since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
                        $$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$



                        Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
                        $$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
                        which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.






                        share|cite|improve this answer











                        $endgroup$













                        • $begingroup$
                          Yeah you're gonna have to explain this a bit more
                          $endgroup$
                          – clathratus
                          Dec 30 '18 at 9:51










                        • $begingroup$
                          @ClementC.: of course, now fixed.
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 10:44










                        • $begingroup$
                          OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 10:57








                        • 1




                          $begingroup$
                          @ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 14:11










                        • $begingroup$
                          @JackDAurizio Ah. Thanks.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 16:10
















                        2












                        $begingroup$

                        Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given



                        $$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
                        since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
                        $$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$



                        Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
                        $$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
                        which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.






                        share|cite|improve this answer











                        $endgroup$













                        • $begingroup$
                          Yeah you're gonna have to explain this a bit more
                          $endgroup$
                          – clathratus
                          Dec 30 '18 at 9:51










                        • $begingroup$
                          @ClementC.: of course, now fixed.
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 10:44










                        • $begingroup$
                          OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 10:57








                        • 1




                          $begingroup$
                          @ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 14:11










                        • $begingroup$
                          @JackDAurizio Ah. Thanks.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 16:10














                        2












                        2








                        2





                        $begingroup$

                        Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given



                        $$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
                        since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
                        $$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$



                        Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
                        $$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
                        which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.






                        share|cite|improve this answer











                        $endgroup$



                        Differentiation of the Beta function is a viable approach, but since we are dealing with a squared logarithm and not higher powers, it is faster to just exploit the Fourier (cosine) series of $log(cos^2theta)$ and Parseval's theorem. Given



                        $$-log(cos^2theta)=2log 2+2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta),tag{1} $$
                        since $int_{0}^{pi/2}cos(2jx)cos(2kx),dx =frac{pi}{4}delta(j,k)$, we immediately have
                        $$ int_{0}^{pi/2}log^2(cos^2theta),dtheta = 2pilog^2 2+pizeta(2).tag{2}$$



                        Since the LHS equals $int_{0}^{1}frac{4log^2 x}{sqrt{1-x^2}},dx$, we have just found the value of the hypergeometric series
                        $$ 8sum_{ngeq 0}frac{binom{2n}{n}}{4^n(2n+1)^3}=8cdotphantom{}_4 F_3left(tfrac{1}{2},tfrac{1}{2},tfrac{1}{2},tfrac{1}{2};tfrac{3}{2},tfrac{3}{2},tfrac{3}{2};1right)tag{3} $$
                        which also equals $int_{0}^{+infty}frac{log^2(1+t^2)}{1+t^2},dt$ or $frac{1}{2}int_{0}^{1}frac{log^2(x)}{sqrt{x(1-x)}},dx$.







                        share|cite|improve this answer














                        share|cite|improve this answer



                        share|cite|improve this answer








                        edited Dec 31 '18 at 17:32

























                        answered Dec 30 '18 at 9:48









                        Jack D'AurizioJack D'Aurizio

                        290k33282664




                        290k33282664












                        • $begingroup$
                          Yeah you're gonna have to explain this a bit more
                          $endgroup$
                          – clathratus
                          Dec 30 '18 at 9:51










                        • $begingroup$
                          @ClementC.: of course, now fixed.
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 10:44










                        • $begingroup$
                          OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 10:57








                        • 1




                          $begingroup$
                          @ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 14:11










                        • $begingroup$
                          @JackDAurizio Ah. Thanks.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 16:10


















                        • $begingroup$
                          Yeah you're gonna have to explain this a bit more
                          $endgroup$
                          – clathratus
                          Dec 30 '18 at 9:51










                        • $begingroup$
                          @ClementC.: of course, now fixed.
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 10:44










                        • $begingroup$
                          OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 10:57








                        • 1




                          $begingroup$
                          @ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
                          $endgroup$
                          – Jack D'Aurizio
                          Dec 30 '18 at 14:11










                        • $begingroup$
                          @JackDAurizio Ah. Thanks.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 16:10
















                        $begingroup$
                        Yeah you're gonna have to explain this a bit more
                        $endgroup$
                        – clathratus
                        Dec 30 '18 at 9:51




                        $begingroup$
                        Yeah you're gonna have to explain this a bit more
                        $endgroup$
                        – clathratus
                        Dec 30 '18 at 9:51












                        $begingroup$
                        @ClementC.: of course, now fixed.
                        $endgroup$
                        – Jack D'Aurizio
                        Dec 30 '18 at 10:44




                        $begingroup$
                        @ClementC.: of course, now fixed.
                        $endgroup$
                        – Jack D'Aurizio
                        Dec 30 '18 at 10:44












                        $begingroup$
                        OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
                        $endgroup$
                        – Clement C.
                        Dec 30 '18 at 10:57






                        $begingroup$
                        OK, I have a dumb question. You get $frac{pi}{2}sum_{kgeq 1} left(frac{1}{k}right)^2=2pizeta(2)$ for the second term by Parseval, don't you? (or did I mess up with one factor there?)
                        $endgroup$
                        – Clement C.
                        Dec 30 '18 at 10:57






                        1




                        1




                        $begingroup$
                        @ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
                        $endgroup$
                        – Jack D'Aurizio
                        Dec 30 '18 at 14:11




                        $begingroup$
                        @ClementC. the factor $2$ in $(1)$ gives that $$int_{0}^{pi/2}left(2sum_{kgeq 1}frac{(-1)^k}{k}cos(2ktheta)right)^2,dtheta = 4cdotfrac{pi}{4}cdotzeta(2)=pizeta(2).$$
                        $endgroup$
                        – Jack D'Aurizio
                        Dec 30 '18 at 14:11












                        $begingroup$
                        @JackDAurizio Ah. Thanks.
                        $endgroup$
                        – Clement C.
                        Dec 30 '18 at 16:10




                        $begingroup$
                        @JackDAurizio Ah. Thanks.
                        $endgroup$
                        – Clement C.
                        Dec 30 '18 at 16:10











                        1












                        $begingroup$

                        Getting rid of the first roadblock:



                        Use the fact that $$log(acos x) = log a + logcos x$$
                        along with the result that
                        $$
                        int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
                        $$

                        to get
                        $$
                        F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
                        $$






                        share|cite|improve this answer









                        $endgroup$













                        • $begingroup$
                          Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 8:58
















                        1












                        $begingroup$

                        Getting rid of the first roadblock:



                        Use the fact that $$log(acos x) = log a + logcos x$$
                        along with the result that
                        $$
                        int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
                        $$

                        to get
                        $$
                        F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
                        $$






                        share|cite|improve this answer









                        $endgroup$













                        • $begingroup$
                          Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 8:58














                        1












                        1








                        1





                        $begingroup$

                        Getting rid of the first roadblock:



                        Use the fact that $$log(acos x) = log a + logcos x$$
                        along with the result that
                        $$
                        int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
                        $$

                        to get
                        $$
                        F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
                        $$






                        share|cite|improve this answer









                        $endgroup$



                        Getting rid of the first roadblock:



                        Use the fact that $$log(acos x) = log a + logcos x$$
                        along with the result that
                        $$
                        int_0^{pi/2} logcos x,dx = -frac{pi}{2}log 2
                        $$

                        to get
                        $$
                        F'(a) = frac{pilog a}{a} -frac{pi}{2a}log 2
                        $$







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Dec 30 '18 at 8:53









                        Clement C.Clement C.

                        50.6k33892




                        50.6k33892












                        • $begingroup$
                          Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 8:58


















                        • $begingroup$
                          Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
                          $endgroup$
                          – Clement C.
                          Dec 30 '18 at 8:58
















                        $begingroup$
                        Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
                        $endgroup$
                        – Clement C.
                        Dec 30 '18 at 8:58




                        $begingroup$
                        Of course, one of the proofs of the intermediary result is due to Jack D'Aurizio.
                        $endgroup$
                        – Clement C.
                        Dec 30 '18 at 8:58











                        1












                        $begingroup$

                        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                        newcommand{dd}{mathrm{d}}
                        newcommand{ds}[1]{displaystyle{#1}}
                        newcommand{expo}[1]{,mathrm{e}^{#1},}
                        newcommand{ic}{mathrm{i}}
                        newcommand{mc}[1]{mathcal{#1}}
                        newcommand{mrm}[1]{mathrm{#1}}
                        newcommand{pars}[1]{left(,{#1},right)}
                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                        newcommand{verts}[1]{leftvert,{#1},rightvert}$




                        $ds{I equiv
                        int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
                        {pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$
                        .




                        begin{align}
                        I & equiv
                        bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
                        ,,,stackrel{x mapsto pi/2 - x}{=},,,
                        4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
                        \[5mm] & =
                        left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
                        ,rightvert_{ z = exppars{ic x}}
                        \[5mm] & =
                        left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
                        ,rightvert_{ z = exppars{ic x}}
                        \[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
                        -, 4,
                        overbrace{Imint_{1}^{epsilon}ln^{2}
                        pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
                        \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
                        4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
                        \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
                        -4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
                        \[1cm] & =
                        4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
                        pars{{pi over 2} - theta}^{2}},ddtheta
                        -4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
                        {dd x over x}
                        \[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
                        bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                        bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
                        4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
                        \[5mm] & =
                        bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                        bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
                        2pilnpars{epsilon}lnpars{4epsilon}}
                        \[5mm] & stackrel{mrm{as} epsilon to 0}{to}
                        bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
                        8.1865
                        end{align}




                        Note that
                        $ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
                        -,mrm{Li}pars{1} = -,{pi^{2} over 6}}$
                        .







                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                          newcommand{dd}{mathrm{d}}
                          newcommand{ds}[1]{displaystyle{#1}}
                          newcommand{expo}[1]{,mathrm{e}^{#1},}
                          newcommand{ic}{mathrm{i}}
                          newcommand{mc}[1]{mathcal{#1}}
                          newcommand{mrm}[1]{mathrm{#1}}
                          newcommand{pars}[1]{left(,{#1},right)}
                          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                          newcommand{verts}[1]{leftvert,{#1},rightvert}$




                          $ds{I equiv
                          int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
                          {pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$
                          .




                          begin{align}
                          I & equiv
                          bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
                          ,,,stackrel{x mapsto pi/2 - x}{=},,,
                          4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
                          \[5mm] & =
                          left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
                          ,rightvert_{ z = exppars{ic x}}
                          \[5mm] & =
                          left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
                          ,rightvert_{ z = exppars{ic x}}
                          \[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
                          -, 4,
                          overbrace{Imint_{1}^{epsilon}ln^{2}
                          pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
                          \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
                          4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
                          \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
                          -4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
                          \[1cm] & =
                          4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
                          pars{{pi over 2} - theta}^{2}},ddtheta
                          -4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
                          {dd x over x}
                          \[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
                          bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                          bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
                          4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
                          \[5mm] & =
                          bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                          bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
                          2pilnpars{epsilon}lnpars{4epsilon}}
                          \[5mm] & stackrel{mrm{as} epsilon to 0}{to}
                          bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
                          8.1865
                          end{align}




                          Note that
                          $ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
                          -,mrm{Li}pars{1} = -,{pi^{2} over 6}}$
                          .







                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                            newcommand{dd}{mathrm{d}}
                            newcommand{ds}[1]{displaystyle{#1}}
                            newcommand{expo}[1]{,mathrm{e}^{#1},}
                            newcommand{ic}{mathrm{i}}
                            newcommand{mc}[1]{mathcal{#1}}
                            newcommand{mrm}[1]{mathrm{#1}}
                            newcommand{pars}[1]{left(,{#1},right)}
                            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                            newcommand{verts}[1]{leftvert,{#1},rightvert}$




                            $ds{I equiv
                            int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
                            {pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$
                            .




                            begin{align}
                            I & equiv
                            bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
                            ,,,stackrel{x mapsto pi/2 - x}{=},,,
                            4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
                            \[5mm] & =
                            left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
                            ,rightvert_{ z = exppars{ic x}}
                            \[5mm] & =
                            left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
                            ,rightvert_{ z = exppars{ic x}}
                            \[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
                            -, 4,
                            overbrace{Imint_{1}^{epsilon}ln^{2}
                            pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
                            \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
                            4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
                            \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
                            -4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
                            \[1cm] & =
                            4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
                            pars{{pi over 2} - theta}^{2}},ddtheta
                            -4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
                            {dd x over x}
                            \[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
                            bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                            bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
                            4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
                            \[5mm] & =
                            bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                            bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
                            2pilnpars{epsilon}lnpars{4epsilon}}
                            \[5mm] & stackrel{mrm{as} epsilon to 0}{to}
                            bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
                            8.1865
                            end{align}




                            Note that
                            $ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
                            -,mrm{Li}pars{1} = -,{pi^{2} over 6}}$
                            .







                            share|cite|improve this answer









                            $endgroup$



                            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                            newcommand{dd}{mathrm{d}}
                            newcommand{ds}[1]{displaystyle{#1}}
                            newcommand{expo}[1]{,mathrm{e}^{#1},}
                            newcommand{ic}{mathrm{i}}
                            newcommand{mc}[1]{mathcal{#1}}
                            newcommand{mrm}[1]{mathrm{#1}}
                            newcommand{pars}[1]{left(,{#1},right)}
                            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                            newcommand{verts}[1]{leftvert,{#1},rightvert}$




                            $ds{I equiv
                            int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x =
                            {pi^{3} over 6} + 2piln^{2}pars{2}: {LARGE ?}}$
                            .




                            begin{align}
                            I & equiv
                            bbox[10px,#ffd]{int_{0}^{pi/2}ln^{2}pars{cos^{2}pars{x}},dd x}
                            ,,,stackrel{x mapsto pi/2 - x}{=},,,
                            4int_{0}^{pi/2}ln^{2}pars{sinpars{x}},dd x
                            \[5mm] & =
                            left.4,Reint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over ic z}
                            ,rightvert_{ z = exppars{ic x}}
                            \[5mm] & =
                            left.4,Imint_{x = 0}^{x = pi/2}ln^{2}pars{{1 - z^{2} over 2z},ic},{dd z over z}
                            ,rightvert_{ z = exppars{ic x}}
                            \[1cm] & stackrel{mrm{as} epsilon to 0^{+}}{sim},,,
                            -, 4,
                            overbrace{Imint_{1}^{epsilon}ln^{2}
                            pars{1 + y^{2} over 2y},{dd y over y}}^{ds{= large 0}}
                            \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,} -
                            4,Imint_{pi/2}^{0}bracks{lnpars{1 over 2epsilon} + pars{{pi over 2} - theta}ic}^{2},ic,ddtheta
                            \[2mm] & phantom{stackrel{mrm{as} epsilon to 0^{+}}{sim},,,,,,,,}
                            -4,Imint_{epsilon}^{1}bracks{lnpars{1 - x^{2} over 2x} + {pi over 2},ic}^{2}{dd x over x}
                            \[1cm] & =
                            4int_{0}^{pi/2}bracks{ln^{2}pars{2epsilon} -
                            pars{{pi over 2} - theta}^{2}},ddtheta
                            -4piint_{epsilon}^{1}lnpars{1 - x^{2} over 2x}
                            {dd x over x}
                            \[5mm] & stackrel{mrm{as} epsilon to 0^{+}}{sim}
                            bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                            bracks{4piint_{0}^{1}{lnpars{1 - x^{2}} over x},dd x -
                            4piint_{epsilon}^{1}{lnpars{2x} over x},dd x}
                            \[5mm] & =
                            bracks{2piln^{2}pars{2epsilon} - {pi^{3} over 6}} -
                            bracks{2piint_{0}^{1}{lnpars{1 - x} over x},dd x +
                            2pilnpars{epsilon}lnpars{4epsilon}}
                            \[5mm] & stackrel{mrm{as} epsilon to 0}{to}
                            bbx{{pi^{3} over 6} + 2piln^{2}pars{2}} approx
                            8.1865
                            end{align}




                            Note that
                            $ds{int_{0}^{1}{lnpars{1 - x} over x},dd x =
                            -,mrm{Li}pars{1} = -,{pi^{2} over 6}}$
                            .








                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 2 at 21:40









                            Felix MarinFelix Marin

                            68.2k7109143




                            68.2k7109143






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056623%2fint-0-pi-2-log2-cos2x-mathrmdx-frac-pi362-pi-log22%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Bressuire

                                Cabo Verde

                                Gyllenstierna