Take the derivative of a product of sequence












2














How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?



Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.



I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,



@Ankit Kumar help me with:



$$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.










share|cite|improve this question



























    2














    How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?



    Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.



    I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,



    @Ankit Kumar help me with:



    $$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
    then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.










    share|cite|improve this question

























      2












      2








      2


      0





      How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?



      Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.



      I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,



      @Ankit Kumar help me with:



      $$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
      then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.










      share|cite|improve this question













      How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?



      Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.



      I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,



      @Ankit Kumar help me with:



      $$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
      then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.







      calculus probability derivatives






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 9 at 15:43









      Crisp

      133




      133






















          1 Answer
          1






          active

          oldest

          votes


















          2














          Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
          begin{align*}
          color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
          &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
          &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
          &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
          & vdots\
          &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
          +cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
          &,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
          end{align*}




          We obtain according to (1)
          begin{align*}
          frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
          &=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
          &=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
          end{align*}







          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032519%2ftake-the-derivative-of-a-product-of-sequence%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
            begin{align*}
            color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
            &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
            &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
            &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
            & vdots\
            &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
            +cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
            &,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
            end{align*}




            We obtain according to (1)
            begin{align*}
            frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
            &=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
            &=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
            end{align*}







            share|cite|improve this answer


























              2














              Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
              begin{align*}
              color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
              &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
              &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
              &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
              & vdots\
              &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
              +cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
              &,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
              end{align*}




              We obtain according to (1)
              begin{align*}
              frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
              &=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
              &=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
              end{align*}







              share|cite|improve this answer
























                2












                2








                2






                Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
                begin{align*}
                color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
                &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
                &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
                &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
                & vdots\
                &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
                +cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
                &,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
                end{align*}




                We obtain according to (1)
                begin{align*}
                frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
                &=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
                &=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
                end{align*}







                share|cite|improve this answer












                Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
                begin{align*}
                color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
                &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
                &=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
                &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
                & vdots\
                &=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
                +cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
                &,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
                end{align*}




                We obtain according to (1)
                begin{align*}
                frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
                &=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
                &=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
                end{align*}








                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 9 at 17:28









                Markus Scheuer

                60k455143




                60k455143






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032519%2ftake-the-derivative-of-a-product-of-sequence%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna