Take the derivative of a product of sequence
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,
@Ankit Kumar help me with:
$$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.
calculus probability derivatives
add a comment |
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,
@Ankit Kumar help me with:
$$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.
calculus probability derivatives
add a comment |
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,
@Ankit Kumar help me with:
$$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.
calculus probability derivatives
How to take the derivative of $prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ with regard to x?
Here $F(X)=prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})I(x>0)$ is a CDF, and I want to take the derivative of it and get the pdf of X.
I try to take the log of F(X), so $frac{d}{d x}logF(x)=frac{d logF(x)}{d F(x)}cdot frac{d F(x)}{d x}$,
@Ankit Kumar help me with:
$$frac{d(logF(x))}{dx}=sum_{i=1}^nfrac{d(log(1-e^{-lambda_ix}))}{dx}$$,
then $$frac{1}{F(x)}frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}$$, but I don't know how to move on with $frac{d(F(x))}{dx}=sum_{i=1}^nfrac{1}{log(1-e^{-lambda_ix})}{lambda_ie^{-lambda_ix}}cdot prod_{i=1}^{n}(1-e^{-lambda _{i}cdot x})$, how to simplify it? since it is a multiplication of a sum of sequence and a product of sequence.
calculus probability derivatives
calculus probability derivatives
asked Dec 9 at 15:43
Crisp
133
133
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
begin{align*}
color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
& vdots\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
+cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
&,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
end{align*}
We obtain according to (1)
begin{align*}
frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
&=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
&=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
end{align*}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032519%2ftake-the-derivative-of-a-product-of-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
begin{align*}
color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
& vdots\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
+cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
&,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
end{align*}
We obtain according to (1)
begin{align*}
frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
&=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
&=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
end{align*}
add a comment |
Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
begin{align*}
color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
& vdots\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
+cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
&,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
end{align*}
We obtain according to (1)
begin{align*}
frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
&=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
&=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
end{align*}
add a comment |
Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
begin{align*}
color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
& vdots\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
+cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
&,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
end{align*}
We obtain according to (1)
begin{align*}
frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
&=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
&=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
end{align*}
Here is another approach. Recall the product formula $(fcdot g)^{prime}=f^{prime}cdot g+fcdot g^{prime}$ of the product of two differentiable functions $f,g$. We can generalise this (and for instance prove it with induction) and obtain
begin{align*}
color{blue}{left(prod_{j=1}^n f_j(x)right)^{prime}}
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(prod_{j=2}^n f_j(x)right)^prime\
&=left(f_1(x)right)^prime prod_{j=2}^nf_j(x)+f_1(x)left(left(f_2(x)right)^prime prod_{j=3}^nf_j(x)+f_2(x)left(prod_{j=3}^n f_j(x)right)^primeright)\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)+f_1(x)f_2(x)left(prod_{j=3}^n f_j(x)right)^prime\
& vdots\
&=left(f_1(x)right)^prime prod_{{j=1}atop{jne 1}}^nf_j(x)+left(f_2(x)right)^prime prod_{{j=1}atop{jne 2}}^nf_j(x)
+cdots+left(f_n(x)right)^prime prod_{{j=1}atop{jne n}}^nf_j(x)\
&,,color{blue}{=sum_{k=1}^nleft(f_k(x)right)^{prime} prod_{{j=1}atop{jne k}}^nf_j(x)}tag{1}
end{align*}
We obtain according to (1)
begin{align*}
frac{d}{dx}left(prod_{j=1}^nleft(1-e^{-lambda_j x}right)right)
&=sum_{k=1}^nleft(frac{d}{dx}left(1-e^{-lambda_k x}right)right)prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)\
&=sum_{k=1}^nlambda_k e^{-lambda_k x}prod_{{j=1}atop{jne k}}^nleft(1-e^{-lambda_j x}right)
end{align*}
answered Dec 9 at 17:28
Markus Scheuer
60k455143
60k455143
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032519%2ftake-the-derivative-of-a-product-of-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown