Limit using definition of $e$












1












$begingroup$


I'm trying to calculate the following limit:
$$
lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
$$

My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.



Does anyone have any advice?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I'm trying to calculate the following limit:
    $$
    lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
    $$

    My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.



    Does anyone have any advice?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I'm trying to calculate the following limit:
      $$
      lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
      $$

      My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.



      Does anyone have any advice?










      share|cite|improve this question











      $endgroup$




      I'm trying to calculate the following limit:
      $$
      lim_{xto0}bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x}
      $$

      My instinct is as follows: use the binomial theorem on the square root, cancel higher order terms (i.e treat the square root as $1$), then appeal to the limit definition of $e$ to get the answer $exp(-4b)$. However, this does not feel terribly rigorous and I'm unsure if it's right.



      Does anyone have any advice?







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 7 at 21:19









      egreg

      185k1486206




      185k1486206










      asked Jan 7 at 21:14









      Bob Garth Bob Garth

      61




      61






















          5 Answers
          5






          active

          oldest

          votes


















          1












          $begingroup$

          You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            @egreg Thanks; fixed.
            $endgroup$
            – J.G.
            Jan 7 at 21:35



















          0












          $begingroup$

          Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
          $$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
          By using L'Hôpital's Rule, this is equal to:
          $$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
          $$=-4 cdot b$$
          $$therefore L=e^{-4 cdot b}$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            use limlimits_{xto 0} for $limlimits_{xto 0}$
            $endgroup$
            – zwim
            Jan 7 at 21:27












          • $begingroup$
            A few judicious parentheses might help here.
            $endgroup$
            – TonyK
            Jan 7 at 21:30



















          0












          $begingroup$

          It's basically right:
          $$
          -4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
          $$

          Now you can substitute $-4x=y$, so the limit becomes
          $$
          lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
          $$

          and $lim_{yto0}(1+y)^{1/y}=e$ is known.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
            $$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
            $$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
            $$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
            $$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
            $$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:





              • $y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
                begin{eqnarray*}
                bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
                & = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
                & stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
                end{eqnarray*}







              share|cite|improve this answer









              $endgroup$














                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065499%2flimit-using-definition-of-e%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                5 Answers
                5






                active

                oldest

                votes








                5 Answers
                5






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                1












                $begingroup$

                You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  @egreg Thanks; fixed.
                  $endgroup$
                  – J.G.
                  Jan 7 at 21:35
















                1












                $begingroup$

                You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  @egreg Thanks; fixed.
                  $endgroup$
                  – J.G.
                  Jan 7 at 21:35














                1












                1








                1





                $begingroup$

                You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$






                share|cite|improve this answer











                $endgroup$



                You can use little-$o$ notation. You're taking the limit of $$(1-4x+8x^2+o(x^2))^{b/x}=exp frac{b}{x}(-4x+o(x))=exp (-4b+o(1))=exp(-4b)+o(1).$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 7 at 21:35

























                answered Jan 7 at 21:25









                J.G.J.G.

                32.3k23250




                32.3k23250












                • $begingroup$
                  @egreg Thanks; fixed.
                  $endgroup$
                  – J.G.
                  Jan 7 at 21:35


















                • $begingroup$
                  @egreg Thanks; fixed.
                  $endgroup$
                  – J.G.
                  Jan 7 at 21:35
















                $begingroup$
                @egreg Thanks; fixed.
                $endgroup$
                – J.G.
                Jan 7 at 21:35




                $begingroup$
                @egreg Thanks; fixed.
                $endgroup$
                – J.G.
                Jan 7 at 21:35











                0












                $begingroup$

                Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
                $$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
                By using L'Hôpital's Rule, this is equal to:
                $$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
                $$=-4 cdot b$$
                $$therefore L=e^{-4 cdot b}$$






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  use limlimits_{xto 0} for $limlimits_{xto 0}$
                  $endgroup$
                  – zwim
                  Jan 7 at 21:27












                • $begingroup$
                  A few judicious parentheses might help here.
                  $endgroup$
                  – TonyK
                  Jan 7 at 21:30
















                0












                $begingroup$

                Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
                $$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
                By using L'Hôpital's Rule, this is equal to:
                $$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
                $$=-4 cdot b$$
                $$therefore L=e^{-4 cdot b}$$






                share|cite|improve this answer









                $endgroup$













                • $begingroup$
                  use limlimits_{xto 0} for $limlimits_{xto 0}$
                  $endgroup$
                  – zwim
                  Jan 7 at 21:27












                • $begingroup$
                  A few judicious parentheses might help here.
                  $endgroup$
                  – TonyK
                  Jan 7 at 21:30














                0












                0








                0





                $begingroup$

                Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
                $$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
                By using L'Hôpital's Rule, this is equal to:
                $$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
                $$=-4 cdot b$$
                $$therefore L=e^{-4 cdot b}$$






                share|cite|improve this answer









                $endgroup$



                Letting $L = lim_{X to 0} (-4x+sqrt{16x^2+1})^{frac{b}{x}}$ we have;
                $$ln{L}=b cdot lim_{X to 0} frac{ln{-4x+sqrt{16x^2+1}}}{x} $$
                By using L'Hôpital's Rule, this is equal to:
                $$ln{L}=b cdot lim_{X to 0} frac{-4+frac{32x}{2 cdot sqrt{16x^2+1}}}{-4x+sqrt{16x^2+1}} $$
                $$=-4 cdot b$$
                $$therefore L=e^{-4 cdot b}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 7 at 21:26









                Peter ForemanPeter Foreman

                4,5401216




                4,5401216












                • $begingroup$
                  use limlimits_{xto 0} for $limlimits_{xto 0}$
                  $endgroup$
                  – zwim
                  Jan 7 at 21:27












                • $begingroup$
                  A few judicious parentheses might help here.
                  $endgroup$
                  – TonyK
                  Jan 7 at 21:30


















                • $begingroup$
                  use limlimits_{xto 0} for $limlimits_{xto 0}$
                  $endgroup$
                  – zwim
                  Jan 7 at 21:27












                • $begingroup$
                  A few judicious parentheses might help here.
                  $endgroup$
                  – TonyK
                  Jan 7 at 21:30
















                $begingroup$
                use limlimits_{xto 0} for $limlimits_{xto 0}$
                $endgroup$
                – zwim
                Jan 7 at 21:27






                $begingroup$
                use limlimits_{xto 0} for $limlimits_{xto 0}$
                $endgroup$
                – zwim
                Jan 7 at 21:27














                $begingroup$
                A few judicious parentheses might help here.
                $endgroup$
                – TonyK
                Jan 7 at 21:30




                $begingroup$
                A few judicious parentheses might help here.
                $endgroup$
                – TonyK
                Jan 7 at 21:30











                0












                $begingroup$

                It's basically right:
                $$
                -4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
                $$

                Now you can substitute $-4x=y$, so the limit becomes
                $$
                lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
                $$

                and $lim_{yto0}(1+y)^{1/y}=e$ is known.






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  It's basically right:
                  $$
                  -4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
                  $$

                  Now you can substitute $-4x=y$, so the limit becomes
                  $$
                  lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
                  $$

                  and $lim_{yto0}(1+y)^{1/y}=e$ is known.






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    It's basically right:
                    $$
                    -4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
                    $$

                    Now you can substitute $-4x=y$, so the limit becomes
                    $$
                    lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
                    $$

                    and $lim_{yto0}(1+y)^{1/y}=e$ is known.






                    share|cite|improve this answer









                    $endgroup$



                    It's basically right:
                    $$
                    -4x+sqrt{1+16x^2}=-4x+1+frac{16x^2}{2}+o(x^2)=1-4x+o(x)
                    $$

                    Now you can substitute $-4x=y$, so the limit becomes
                    $$
                    lim_{yto0}bigl((1+y+o(y))^{1/y}bigr)^{-4b}
                    $$

                    and $lim_{yto0}(1+y)^{1/y}=e$ is known.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 7 at 21:39









                    egregegreg

                    185k1486206




                    185k1486206























                        0












                        $begingroup$

                        Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
                        $$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
                        $$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
                        $$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
                        $$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
                        $$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
                          $$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
                          $$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
                          $$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
                          $$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
                          $$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
                            $$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
                            $$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
                            $$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
                            $$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
                            $$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.






                            share|cite|improve this answer









                            $endgroup$



                            Consider $$y=bigr( sqrt{16x^2 + 1}-4xbigr)^{frac bx}$$ By Taylor or binomial expansion, we have
                            $$sqrt{16x^2 + 1}=1+8 x^2+Oleft(x^4right)$$ that is to say
                            $$sqrt{16x^2 + 1}-4x=1-4 x+8 x^2+Oleft(x^4right)$$ Now
                            $$log(y)=frac bx logbigr( sqrt{16x^2 + 1}-4xbigr)=frac bxlogbigr(1-4 x+8 x^2+Oleft(x^4right)bigr)=frac bxbigr( -4 x+frac{32 x^3}{3}+Oleft(x^4right)bigr)$$
                            $$log(y)=-4 b+frac{32 b x^2}{3}+Oleft(x^3right)$$ Continue with Taylor
                            $$y=e^{log(y)}=e^{-4 b}+frac{32}{3} b e^{-4 b} x^2+Oleft(x^3right)$$ which shows the limit and how it is approached.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 8 at 6:42









                            Claude LeiboviciClaude Leibovici

                            125k1158135




                            125k1158135























                                0












                                $begingroup$

                                Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:





                                • $y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
                                  begin{eqnarray*}
                                  bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
                                  & = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
                                  & stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
                                  end{eqnarray*}







                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:





                                  • $y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
                                    begin{eqnarray*}
                                    bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
                                    & = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
                                    & stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
                                    end{eqnarray*}







                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:





                                    • $y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
                                      begin{eqnarray*}
                                      bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
                                      & = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
                                      & stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
                                      end{eqnarray*}







                                    share|cite|improve this answer









                                    $endgroup$



                                    Here is a way by "enforcing" a $color{red}{1}$ in the brackets and using the standard limit for $e$:





                                    • $y_n stackrel{n to infty}{longrightarrow}0 Rightarrow (1+y_n)^{frac{1}{y_n}}stackrel{n to infty}{longrightarrow}e$
                                      begin{eqnarray*}
                                      bigl(-4x + sqrt{16x^2 + 1},bigr)^{b/x} & = & left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{b/x}\
                                      & = & left(underbrace{left(color{red}{1} + left(color{blue}{-4x + sqrt{16x^2+1} -1}right) right)^{frac{1}{color{blue}{-4x + sqrt{16x^2+1} -1}}}}_{stackrel{xto 0}{rightarrow}e} right)^{bcdot underbrace{frac{color{blue}{-4x + sqrt{16x^2+1} -1}}{x}}_{stackrel{xto 0}{rightarrow}-4=f'(0),; f(x) = -4x + sqrt{16x^2+1}}} \
                                      & stackrel{xto 0}{longrightarrow} & e^{bcdot (-4)}
                                      end{eqnarray*}








                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 8 at 12:11









                                    trancelocationtrancelocation

                                    13.3k1827




                                    13.3k1827






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065499%2flimit-using-definition-of-e%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Bressuire

                                        Cabo Verde

                                        Gyllenstierna