Normed linear space
In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
and then later he shows that
$|Lambda x|leq |Lambda||x|.$
But, the only thing I know is $|Lambda|geq|Lambda x|$.
How to show that indeed $|Lambda x|leq |Lambda||x|.$
real-analysis inequality normed-spaces
add a comment |
In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
and then later he shows that
$|Lambda x|leq |Lambda||x|.$
But, the only thing I know is $|Lambda|geq|Lambda x|$.
How to show that indeed $|Lambda x|leq |Lambda||x|.$
real-analysis inequality normed-spaces
add a comment |
In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
and then later he shows that
$|Lambda x|leq |Lambda||x|.$
But, the only thing I know is $|Lambda|geq|Lambda x|$.
How to show that indeed $|Lambda x|leq |Lambda||x|.$
real-analysis inequality normed-spaces
In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
and then later he shows that
$|Lambda x|leq |Lambda||x|.$
But, the only thing I know is $|Lambda|geq|Lambda x|$.
How to show that indeed $|Lambda x|leq |Lambda||x|.$
real-analysis inequality normed-spaces
real-analysis inequality normed-spaces
edited Dec 9 '18 at 22:25
José Carlos Santos
150k22121221
150k22121221
asked Dec 9 '18 at 22:04
beginner
96
96
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
If $x=0$, that inequality is trivial.
In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$
Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
– beginner
Dec 10 '18 at 0:05
Sure, by the definition of $lVertLambdarVert$.
– José Carlos Santos
Dec 10 '18 at 0:09
add a comment |
You can prove that
$$
|Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
$$
by noticing that
$$
left|frac{1}{|x|}x,right|=1
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033085%2fnormed-linear-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
If $x=0$, that inequality is trivial.
In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$
Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
– beginner
Dec 10 '18 at 0:05
Sure, by the definition of $lVertLambdarVert$.
– José Carlos Santos
Dec 10 '18 at 0:09
add a comment |
If $x=0$, that inequality is trivial.
In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$
Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
– beginner
Dec 10 '18 at 0:05
Sure, by the definition of $lVertLambdarVert$.
– José Carlos Santos
Dec 10 '18 at 0:09
add a comment |
If $x=0$, that inequality is trivial.
In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$
If $x=0$, that inequality is trivial.
In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$
answered Dec 9 '18 at 22:15
José Carlos Santos
150k22121221
150k22121221
Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
– beginner
Dec 10 '18 at 0:05
Sure, by the definition of $lVertLambdarVert$.
– José Carlos Santos
Dec 10 '18 at 0:09
add a comment |
Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
– beginner
Dec 10 '18 at 0:05
Sure, by the definition of $lVertLambdarVert$.
– José Carlos Santos
Dec 10 '18 at 0:09
Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
– beginner
Dec 10 '18 at 0:05
Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
– beginner
Dec 10 '18 at 0:05
Sure, by the definition of $lVertLambdarVert$.
– José Carlos Santos
Dec 10 '18 at 0:09
Sure, by the definition of $lVertLambdarVert$.
– José Carlos Santos
Dec 10 '18 at 0:09
add a comment |
You can prove that
$$
|Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
$$
by noticing that
$$
left|frac{1}{|x|}x,right|=1
$$
add a comment |
You can prove that
$$
|Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
$$
by noticing that
$$
left|frac{1}{|x|}x,right|=1
$$
add a comment |
You can prove that
$$
|Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
$$
by noticing that
$$
left|frac{1}{|x|}x,right|=1
$$
You can prove that
$$
|Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
$$
by noticing that
$$
left|frac{1}{|x|}x,right|=1
$$
answered Dec 9 '18 at 22:15
egreg
178k1484201
178k1484201
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033085%2fnormed-linear-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown