Normed linear space












1














In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
and then later he shows that
$|Lambda x|leq |Lambda||x|.$
But, the only thing I know is $|Lambda|geq|Lambda x|$.



How to show that indeed $|Lambda x|leq |Lambda||x|.$










share|cite|improve this question





























    1














    In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
    and then later he shows that
    $|Lambda x|leq |Lambda||x|.$
    But, the only thing I know is $|Lambda|geq|Lambda x|$.



    How to show that indeed $|Lambda x|leq |Lambda||x|.$










    share|cite|improve this question



























      1












      1








      1







      In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
      and then later he shows that
      $|Lambda x|leq |Lambda||x|.$
      But, the only thing I know is $|Lambda|geq|Lambda x|$.



      How to show that indeed $|Lambda x|leq |Lambda||x|.$










      share|cite|improve this question















      In Walter Rudin's Complex Analysis, it states that by definition$$|Lambda|=text{sup}{|Lambda x|: xin X, |x|leq1}$$
      and then later he shows that
      $|Lambda x|leq |Lambda||x|.$
      But, the only thing I know is $|Lambda|geq|Lambda x|$.



      How to show that indeed $|Lambda x|leq |Lambda||x|.$







      real-analysis inequality normed-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 9 '18 at 22:25









      José Carlos Santos

      150k22121221




      150k22121221










      asked Dec 9 '18 at 22:04









      beginner

      96




      96






















          2 Answers
          2






          active

          oldest

          votes


















          1














          If $x=0$, that inequality is trivial.



          In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$






          share|cite|improve this answer





















          • Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
            – beginner
            Dec 10 '18 at 0:05










          • Sure, by the definition of $lVertLambdarVert$.
            – José Carlos Santos
            Dec 10 '18 at 0:09





















          0














          You can prove that
          $$
          |Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
          $$

          by noticing that
          $$
          left|frac{1}{|x|}x,right|=1
          $$






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033085%2fnormed-linear-space%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            If $x=0$, that inequality is trivial.



            In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$






            share|cite|improve this answer





















            • Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
              – beginner
              Dec 10 '18 at 0:05










            • Sure, by the definition of $lVertLambdarVert$.
              – José Carlos Santos
              Dec 10 '18 at 0:09


















            1














            If $x=0$, that inequality is trivial.



            In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$






            share|cite|improve this answer





















            • Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
              – beginner
              Dec 10 '18 at 0:05










            • Sure, by the definition of $lVertLambdarVert$.
              – José Carlos Santos
              Dec 10 '18 at 0:09
















            1












            1








            1






            If $x=0$, that inequality is trivial.



            In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$






            share|cite|improve this answer












            If $x=0$, that inequality is trivial.



            In the other cases, $x=lVert xrVerttimesfrac x{lVert xrVert}$. Since, $leftlVertfrac x{lVert xrVert}rightrVert=1$ and $Lambda$ is linear,$$lvertLambda xrvert=lVert xrVertleftlvertLambdafrac x{lVert xrVert}rightrvertleqslantlVert xrVertlVertLambdarVert.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 9 '18 at 22:15









            José Carlos Santos

            150k22121221




            150k22121221












            • Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
              – beginner
              Dec 10 '18 at 0:05










            • Sure, by the definition of $lVertLambdarVert$.
              – José Carlos Santos
              Dec 10 '18 at 0:09




















            • Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
              – beginner
              Dec 10 '18 at 0:05










            • Sure, by the definition of $lVertLambdarVert$.
              – José Carlos Santos
              Dec 10 '18 at 0:09


















            Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
            – beginner
            Dec 10 '18 at 0:05




            Since, $lVertfrac x{lVert xrVert}rVert=1$ then $lvertLambdafrac x{lVert xrVert}rvertleqlvertLambdarVert$?
            – beginner
            Dec 10 '18 at 0:05












            Sure, by the definition of $lVertLambdarVert$.
            – José Carlos Santos
            Dec 10 '18 at 0:09






            Sure, by the definition of $lVertLambdarVert$.
            – José Carlos Santos
            Dec 10 '18 at 0:09













            0














            You can prove that
            $$
            |Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
            $$

            by noticing that
            $$
            left|frac{1}{|x|}x,right|=1
            $$






            share|cite|improve this answer


























              0














              You can prove that
              $$
              |Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
              $$

              by noticing that
              $$
              left|frac{1}{|x|}x,right|=1
              $$






              share|cite|improve this answer
























                0












                0








                0






                You can prove that
                $$
                |Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
                $$

                by noticing that
                $$
                left|frac{1}{|x|}x,right|=1
                $$






                share|cite|improve this answer












                You can prove that
                $$
                |Lambda|=sup_{substack{xin X\xne0}}frac{|Lambda x|}{|x|}
                $$

                by noticing that
                $$
                left|frac{1}{|x|}x,right|=1
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 9 '18 at 22:15









                egreg

                178k1484201




                178k1484201






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033085%2fnormed-linear-space%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna