$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$












2












$begingroup$



Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$




As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.

But here it is not so. Even the uniform boundedness is also not mentioned.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Uniform convergence is sufficient for the interchange of limit with the integral.
    $endgroup$
    – Math1000
    Jan 5 at 22:12










  • $begingroup$
    Thank you for correcting
    $endgroup$
    – DD90
    Jan 5 at 22:36
















2












$begingroup$



Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$




As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.

But here it is not so. Even the uniform boundedness is also not mentioned.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Uniform convergence is sufficient for the interchange of limit with the integral.
    $endgroup$
    – Math1000
    Jan 5 at 22:12










  • $begingroup$
    Thank you for correcting
    $endgroup$
    – DD90
    Jan 5 at 22:36














2












2








2





$begingroup$



Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$




As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.

But here it is not so. Even the uniform boundedness is also not mentioned.










share|cite|improve this question









$endgroup$





Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$




As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.

But here it is not so. Even the uniform boundedness is also not mentioned.







analysis riemann-integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 5 at 22:01









DD90DD90

2648




2648








  • 1




    $begingroup$
    Uniform convergence is sufficient for the interchange of limit with the integral.
    $endgroup$
    – Math1000
    Jan 5 at 22:12










  • $begingroup$
    Thank you for correcting
    $endgroup$
    – DD90
    Jan 5 at 22:36














  • 1




    $begingroup$
    Uniform convergence is sufficient for the interchange of limit with the integral.
    $endgroup$
    – Math1000
    Jan 5 at 22:12










  • $begingroup$
    Thank you for correcting
    $endgroup$
    – DD90
    Jan 5 at 22:36








1




1




$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12




$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12












$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36




$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36










1 Answer
1






active

oldest

votes


















4












$begingroup$

Hint:



For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
    $endgroup$
    – DD90
    Jan 5 at 22:35






  • 1




    $begingroup$
    So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
    $endgroup$
    – RRL
    Jan 5 at 22:38












  • $begingroup$
    Ah! So it is the proof. Thank you!
    $endgroup$
    – DD90
    Jan 5 at 22:41






  • 1




    $begingroup$
    @DD90: You are welcome.
    $endgroup$
    – RRL
    Jan 5 at 22:42











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063244%2fundersetn-rightarrow-infty-lim-int-0b-nf-nxdx-int-01fxdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

Hint:



For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
    $endgroup$
    – DD90
    Jan 5 at 22:35






  • 1




    $begingroup$
    So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
    $endgroup$
    – RRL
    Jan 5 at 22:38












  • $begingroup$
    Ah! So it is the proof. Thank you!
    $endgroup$
    – DD90
    Jan 5 at 22:41






  • 1




    $begingroup$
    @DD90: You are welcome.
    $endgroup$
    – RRL
    Jan 5 at 22:42
















4












$begingroup$

Hint:



For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
    $endgroup$
    – DD90
    Jan 5 at 22:35






  • 1




    $begingroup$
    So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
    $endgroup$
    – RRL
    Jan 5 at 22:38












  • $begingroup$
    Ah! So it is the proof. Thank you!
    $endgroup$
    – DD90
    Jan 5 at 22:41






  • 1




    $begingroup$
    @DD90: You are welcome.
    $endgroup$
    – RRL
    Jan 5 at 22:42














4












4








4





$begingroup$

Hint:



For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$






share|cite|improve this answer









$endgroup$



Hint:



For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 5 at 22:17









RRLRRL

52.8k42573




52.8k42573












  • $begingroup$
    Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
    $endgroup$
    – DD90
    Jan 5 at 22:35






  • 1




    $begingroup$
    So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
    $endgroup$
    – RRL
    Jan 5 at 22:38












  • $begingroup$
    Ah! So it is the proof. Thank you!
    $endgroup$
    – DD90
    Jan 5 at 22:41






  • 1




    $begingroup$
    @DD90: You are welcome.
    $endgroup$
    – RRL
    Jan 5 at 22:42


















  • $begingroup$
    Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
    $endgroup$
    – DD90
    Jan 5 at 22:35






  • 1




    $begingroup$
    So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
    $endgroup$
    – RRL
    Jan 5 at 22:38












  • $begingroup$
    Ah! So it is the proof. Thank you!
    $endgroup$
    – DD90
    Jan 5 at 22:41






  • 1




    $begingroup$
    @DD90: You are welcome.
    $endgroup$
    – RRL
    Jan 5 at 22:42
















$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35




$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35




1




1




$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38






$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38














$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41




$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41




1




1




$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42




$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063244%2fundersetn-rightarrow-infty-lim-int-0b-nf-nxdx-int-01fxdx%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna