$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$
$begingroup$
Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$
As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.
But here it is not so. Even the uniform boundedness is also not mentioned.
analysis riemann-integration
$endgroup$
add a comment |
$begingroup$
Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$
As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.
But here it is not so. Even the uniform boundedness is also not mentioned.
analysis riemann-integration
$endgroup$
1
$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12
$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36
add a comment |
$begingroup$
Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$
As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.
But here it is not so. Even the uniform boundedness is also not mentioned.
analysis riemann-integration
$endgroup$
Let $(f_n)_{ninmathbb{N}}$ ne a sequence of continuous functions on
$[0,1]rightarrowmathbb{R}$ that converges uniformly to
$f:[0,1]rightarrowmathbb{R}$. Let $(b_n)_{ninmathbb{R}}$ be an
increasing sequence of real numbers in $(0,1)$ that converges to 1.
Prove that : $$underset{nrightarrow infty}{lim}int_{0}^{b_{n}}f_n(x)dx=int_0^1f(x)dx$$
As far as I know if we have a sequence of functions converging uniformly to $f$ AND if they are uniformly bounded we can have the following: $$underset{nrightarrow infty}{lim}int_{0}^{1}f_n(x)dx=int_0^1f(x)dx$$.
But here it is not so. Even the uniform boundedness is also not mentioned.
analysis riemann-integration
analysis riemann-integration
asked Jan 5 at 22:01
DD90DD90
2648
2648
1
$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12
$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36
add a comment |
1
$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12
$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36
1
1
$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12
$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12
$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36
$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$
$endgroup$
$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35
1
$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38
$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41
1
$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063244%2fundersetn-rightarrow-infty-lim-int-0b-nf-nxdx-int-01fxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$
$endgroup$
$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35
1
$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38
$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41
1
$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42
add a comment |
$begingroup$
Hint:
For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$
$endgroup$
$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35
1
$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38
$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41
1
$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42
add a comment |
$begingroup$
Hint:
For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$
$endgroup$
Hint:
For any $epsilon > 0$, we have for all sufficiently large $n$
$$left|int_0^{b_n} f_n - int_0^1 f right| leqslant int_0^{b_n}|f_n - f| + int_{b_n}^1 |f| leqslant epsilon b_n + sup_{x in [0,1]} |f(x)| (1 - b_n)$$
answered Jan 5 at 22:17
RRLRRL
52.8k42573
52.8k42573
$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35
1
$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38
$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41
1
$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42
add a comment |
$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35
1
$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38
$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41
1
$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42
$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35
$begingroup$
Thanks. It works. But I need a small clarification: is it always true that $|int f dx|leqint|f|dx$? If so can you please point out a website or a book which state this result? Thanks again!
$endgroup$
– DD90
Jan 5 at 22:35
1
1
$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38
$begingroup$
So $-|f(x)| leqslant f(x) leqslant |f(x)|$. One side gives us $int_0^1f leqslant int_0^1|f|$. The other side gives us $-int_0^1|f| leqslant int_0^1 f$. Thus $|int_0^1 f| leqslant int_0^1 |f|$.
$endgroup$
– RRL
Jan 5 at 22:38
$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41
$begingroup$
Ah! So it is the proof. Thank you!
$endgroup$
– DD90
Jan 5 at 22:41
1
1
$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42
$begingroup$
@DD90: You are welcome.
$endgroup$
– RRL
Jan 5 at 22:42
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063244%2fundersetn-rightarrow-infty-lim-int-0b-nf-nxdx-int-01fxdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Uniform convergence is sufficient for the interchange of limit with the integral.
$endgroup$
– Math1000
Jan 5 at 22:12
$begingroup$
Thank you for correcting
$endgroup$
– DD90
Jan 5 at 22:36