Derivative of piecewise function with $sinfrac{1}{x}$ term












1












$begingroup$


I was going through my calculus book, and I am not sure I understand this part



$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$



So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
    $endgroup$
    – hardmath
    Dec 15 '18 at 4:06
















1












$begingroup$


I was going through my calculus book, and I am not sure I understand this part



$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$



So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
    $endgroup$
    – hardmath
    Dec 15 '18 at 4:06














1












1








1


1



$begingroup$


I was going through my calculus book, and I am not sure I understand this part



$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$



So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?










share|cite|improve this question











$endgroup$




I was going through my calculus book, and I am not sure I understand this part



$f(x) = begin{cases} frac{x^2}{4}+x^4sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f'(x) = begin{cases} frac{x}{2}-x^2cos(frac{1}{x})+4x^3sin(frac{1}{x}) &text{if $xneq0$ } \ 0 &text{if $x=0$ } end{cases}$



$ f''(x) = begin{cases} frac{1}{2}+12x^2sin(frac{1}{x})-sin(frac{1}{x})-6xcos(frac{1}{x}) &text{if $xneq0$ } \ frac{1}{2} &text{if $x=0$ } end{cases}$



So, I know that when I have piecewise function, I need to look at left and right limit, but I don't see why second part in second derivative is $frac{1}{2}$, or rather why does the $sinfrac{1}{x}$ term go to 0?







calculus derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 19:12









Bernard

119k639112




119k639112










asked Dec 14 '18 at 19:08









DovlaDovla

849




849








  • 1




    $begingroup$
    It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
    $endgroup$
    – hardmath
    Dec 15 '18 at 4:06














  • 1




    $begingroup$
    It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
    $endgroup$
    – hardmath
    Dec 15 '18 at 4:06








1




1




$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06




$begingroup$
It should be noted that the $sin frac{1}{x}$ term does not "go to $0$", and the result shows that while the second derivative $f"(0)$ exists, the second derivative is not continuous at $x=0$.
$endgroup$
– hardmath
Dec 15 '18 at 4:06










2 Answers
2






active

oldest

votes


















4












$begingroup$

If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    hint



    $$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      @hardmath Done. thank you.
      $endgroup$
      – hamam_Abdallah
      Dec 14 '18 at 20:47











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039786%2fderivative-of-piecewise-function-with-sin-frac1x-term%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}






        share|cite|improve this answer









        $endgroup$



        If $xneq0$, thenbegin{align}frac{f'(x)-f'(0)}x&=frac{frac x2-x^2cosleft(frac1xright)+4x^3sinleft(frac1xright)}x\&=frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)end{align}and thereforebegin{align}f''(0)&=lim_{xto0}frac12-xcosleft(frac1xright)+4x^2sinleft(frac1xright)\&=frac12.end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 14 '18 at 19:15









        José Carlos SantosJosé Carlos Santos

        154k22123226




        154k22123226























            3












            $begingroup$

            hint



            $$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              @hardmath Done. thank you.
              $endgroup$
              – hamam_Abdallah
              Dec 14 '18 at 20:47
















            3












            $begingroup$

            hint



            $$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              @hardmath Done. thank you.
              $endgroup$
              – hamam_Abdallah
              Dec 14 '18 at 20:47














            3












            3








            3





            $begingroup$

            hint



            $$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$






            share|cite|improve this answer











            $endgroup$



            hint



            $$f''(0)=lim_{xto 0,xne 0}frac{f'(x)-f'(0)}{x-0}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 14 '18 at 20:47

























            answered Dec 14 '18 at 19:14









            hamam_Abdallahhamam_Abdallah

            38k21634




            38k21634












            • $begingroup$
              @hardmath Done. thank you.
              $endgroup$
              – hamam_Abdallah
              Dec 14 '18 at 20:47


















            • $begingroup$
              @hardmath Done. thank you.
              $endgroup$
              – hamam_Abdallah
              Dec 14 '18 at 20:47
















            $begingroup$
            @hardmath Done. thank you.
            $endgroup$
            – hamam_Abdallah
            Dec 14 '18 at 20:47




            $begingroup$
            @hardmath Done. thank you.
            $endgroup$
            – hamam_Abdallah
            Dec 14 '18 at 20:47


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039786%2fderivative-of-piecewise-function-with-sin-frac1x-term%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna