How can I find the expectation and variance of $Z=max{X,Y}$ where $X$ and $Y$ are defined through joint...












1












$begingroup$


Random variables $X$ and $Y$ and have the joint distribution below, and $Z=max{X,Y}$
$$
begin{array}{c|lcr}
text{XY} & text{1} & text{2} & text{3} \
hline
1 & 0.12 & 0.08 & 0.20 \
2 & 0.18 & 0.12 & 0.30 \
end{array}
$$



Find $E[Z]$ and $V[Z]$



I am unable to understand that if $Z=max{X,Y}$ then how will we take the pairs? Or just $Y=3$ ? Because it is the only maximum. Please explain I am just stuck here.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Random variables $X$ and $Y$ and have the joint distribution below, and $Z=max{X,Y}$
    $$
    begin{array}{c|lcr}
    text{XY} & text{1} & text{2} & text{3} \
    hline
    1 & 0.12 & 0.08 & 0.20 \
    2 & 0.18 & 0.12 & 0.30 \
    end{array}
    $$



    Find $E[Z]$ and $V[Z]$



    I am unable to understand that if $Z=max{X,Y}$ then how will we take the pairs? Or just $Y=3$ ? Because it is the only maximum. Please explain I am just stuck here.










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      Random variables $X$ and $Y$ and have the joint distribution below, and $Z=max{X,Y}$
      $$
      begin{array}{c|lcr}
      text{XY} & text{1} & text{2} & text{3} \
      hline
      1 & 0.12 & 0.08 & 0.20 \
      2 & 0.18 & 0.12 & 0.30 \
      end{array}
      $$



      Find $E[Z]$ and $V[Z]$



      I am unable to understand that if $Z=max{X,Y}$ then how will we take the pairs? Or just $Y=3$ ? Because it is the only maximum. Please explain I am just stuck here.










      share|cite|improve this question











      $endgroup$




      Random variables $X$ and $Y$ and have the joint distribution below, and $Z=max{X,Y}$
      $$
      begin{array}{c|lcr}
      text{XY} & text{1} & text{2} & text{3} \
      hline
      1 & 0.12 & 0.08 & 0.20 \
      2 & 0.18 & 0.12 & 0.30 \
      end{array}
      $$



      Find $E[Z]$ and $V[Z]$



      I am unable to understand that if $Z=max{X,Y}$ then how will we take the pairs? Or just $Y=3$ ? Because it is the only maximum. Please explain I am just stuck here.







      probability statistics random-variables variance expected-value






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 '18 at 19:07









      Yanior Weg

      1,1451935




      1,1451935










      asked Dec 13 '18 at 16:26









      Kriti AroraKriti Arora

      396




      396






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          If $Z = max(X, Y)$, then the following is true:



          $Z = 1$ iff $X = 1$ and $Y = 1$.



          $Z = 2$ iff either $X = 1$ and $Y =2$ or $X = 2$ and $Y = 1$, or $X = 2$ and $Y = 2$.



          $Z = 3$ iff $X = 3$.



          So $P(Z = 1) = 0.12$
          $P(Z = 2) = 0.08 + 0.12 + 0.18 = 0.38$
          $P(Z = 3) = 0.2 + 0.3 = 0.5$.



          Thus $E(Z) = 0.12 + 2*0.38 + 3*0.5 = 0.12 + 0.76 + 1.5 = 2.38$
          $E(Z^2) = 0.12 + 4*0.38 + 9*0.5 = 0.12 + 1.52+ 4.5 = 6.04$



          That means $V(Z) = E(Z^2) - (E(Z))^2 = 6.04 - 5.6644 = 0.3756$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038246%2fhow-can-i-find-the-expectation-and-variance-of-z-max-x-y-where-x-and-y%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            If $Z = max(X, Y)$, then the following is true:



            $Z = 1$ iff $X = 1$ and $Y = 1$.



            $Z = 2$ iff either $X = 1$ and $Y =2$ or $X = 2$ and $Y = 1$, or $X = 2$ and $Y = 2$.



            $Z = 3$ iff $X = 3$.



            So $P(Z = 1) = 0.12$
            $P(Z = 2) = 0.08 + 0.12 + 0.18 = 0.38$
            $P(Z = 3) = 0.2 + 0.3 = 0.5$.



            Thus $E(Z) = 0.12 + 2*0.38 + 3*0.5 = 0.12 + 0.76 + 1.5 = 2.38$
            $E(Z^2) = 0.12 + 4*0.38 + 9*0.5 = 0.12 + 1.52+ 4.5 = 6.04$



            That means $V(Z) = E(Z^2) - (E(Z))^2 = 6.04 - 5.6644 = 0.3756$.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              If $Z = max(X, Y)$, then the following is true:



              $Z = 1$ iff $X = 1$ and $Y = 1$.



              $Z = 2$ iff either $X = 1$ and $Y =2$ or $X = 2$ and $Y = 1$, or $X = 2$ and $Y = 2$.



              $Z = 3$ iff $X = 3$.



              So $P(Z = 1) = 0.12$
              $P(Z = 2) = 0.08 + 0.12 + 0.18 = 0.38$
              $P(Z = 3) = 0.2 + 0.3 = 0.5$.



              Thus $E(Z) = 0.12 + 2*0.38 + 3*0.5 = 0.12 + 0.76 + 1.5 = 2.38$
              $E(Z^2) = 0.12 + 4*0.38 + 9*0.5 = 0.12 + 1.52+ 4.5 = 6.04$



              That means $V(Z) = E(Z^2) - (E(Z))^2 = 6.04 - 5.6644 = 0.3756$.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                If $Z = max(X, Y)$, then the following is true:



                $Z = 1$ iff $X = 1$ and $Y = 1$.



                $Z = 2$ iff either $X = 1$ and $Y =2$ or $X = 2$ and $Y = 1$, or $X = 2$ and $Y = 2$.



                $Z = 3$ iff $X = 3$.



                So $P(Z = 1) = 0.12$
                $P(Z = 2) = 0.08 + 0.12 + 0.18 = 0.38$
                $P(Z = 3) = 0.2 + 0.3 = 0.5$.



                Thus $E(Z) = 0.12 + 2*0.38 + 3*0.5 = 0.12 + 0.76 + 1.5 = 2.38$
                $E(Z^2) = 0.12 + 4*0.38 + 9*0.5 = 0.12 + 1.52+ 4.5 = 6.04$



                That means $V(Z) = E(Z^2) - (E(Z))^2 = 6.04 - 5.6644 = 0.3756$.






                share|cite|improve this answer









                $endgroup$



                If $Z = max(X, Y)$, then the following is true:



                $Z = 1$ iff $X = 1$ and $Y = 1$.



                $Z = 2$ iff either $X = 1$ and $Y =2$ or $X = 2$ and $Y = 1$, or $X = 2$ and $Y = 2$.



                $Z = 3$ iff $X = 3$.



                So $P(Z = 1) = 0.12$
                $P(Z = 2) = 0.08 + 0.12 + 0.18 = 0.38$
                $P(Z = 3) = 0.2 + 0.3 = 0.5$.



                Thus $E(Z) = 0.12 + 2*0.38 + 3*0.5 = 0.12 + 0.76 + 1.5 = 2.38$
                $E(Z^2) = 0.12 + 4*0.38 + 9*0.5 = 0.12 + 1.52+ 4.5 = 6.04$



                That means $V(Z) = E(Z^2) - (E(Z))^2 = 6.04 - 5.6644 = 0.3756$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 13 '18 at 18:26









                Yanior WegYanior Weg

                1,1451935




                1,1451935






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038246%2fhow-can-i-find-the-expectation-and-variance-of-z-max-x-y-where-x-and-y%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna