Prove that $p ◦ p = p$. (Representing a Linear Transformation as a Matrix)
$begingroup$
Let $B = (1, X, X^2)$ be an ordered basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}(mathbb{R}_2[X])$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A = M_B(p)$
Compute $A^2$. Prove that $p ◦ p = p$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
I computed the multiplication and it appears that $A^2$ = $A$. How should I prove it?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
$endgroup$
add a comment |
$begingroup$
Let $B = (1, X, X^2)$ be an ordered basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}(mathbb{R}_2[X])$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A = M_B(p)$
Compute $A^2$. Prove that $p ◦ p = p$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
I computed the multiplication and it appears that $A^2$ = $A$. How should I prove it?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
$endgroup$
$begingroup$
Does $M_B(p)$ mean the matrix of $p$ with respect to the basis $B$?
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:45
$begingroup$
Sure, that's correct.
$endgroup$
– nasdaq
Dec 13 '18 at 16:47
add a comment |
$begingroup$
Let $B = (1, X, X^2)$ be an ordered basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}(mathbb{R}_2[X])$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A = M_B(p)$
Compute $A^2$. Prove that $p ◦ p = p$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
I computed the multiplication and it appears that $A^2$ = $A$. How should I prove it?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
$endgroup$
Let $B = (1, X, X^2)$ be an ordered basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}(mathbb{R}_2[X])$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A = M_B(p)$
Compute $A^2$. Prove that $p ◦ p = p$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
I computed the multiplication and it appears that $A^2$ = $A$. How should I prove it?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
linear-algebra matrices linear-transformations change-of-basis projection-matrices
edited Dec 15 '18 at 12:18
Batominovski
1
1
asked Dec 13 '18 at 16:40
nasdaqnasdaq
62
62
$begingroup$
Does $M_B(p)$ mean the matrix of $p$ with respect to the basis $B$?
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:45
$begingroup$
Sure, that's correct.
$endgroup$
– nasdaq
Dec 13 '18 at 16:47
add a comment |
$begingroup$
Does $M_B(p)$ mean the matrix of $p$ with respect to the basis $B$?
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:45
$begingroup$
Sure, that's correct.
$endgroup$
– nasdaq
Dec 13 '18 at 16:47
$begingroup$
Does $M_B(p)$ mean the matrix of $p$ with respect to the basis $B$?
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:45
$begingroup$
Does $M_B(p)$ mean the matrix of $p$ with respect to the basis $B$?
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:45
$begingroup$
Sure, that's correct.
$endgroup$
– nasdaq
Dec 13 '18 at 16:47
$begingroup$
Sure, that's correct.
$endgroup$
– nasdaq
Dec 13 '18 at 16:47
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $A$ is the matrix corresponding to the linear operator $p$, then $p(v)=Acdot v forall vinBbb R_2[X]$.
$implies(pcirc p)(v)=p(p(v))=Acdot(p(v))=Acdot(Av)=(Acdot A)v=A^2cdot v$
This means the matrix corresponding to the linear operator $pcirc p$ is $A^2$. Since $A^2=A$, the matrices corresponding to $p$ and $pcirc p$ are identical, which means $p=pcirc p$.
$endgroup$
$begingroup$
Thanks, that's very helpful!
$endgroup$
– nasdaq
Dec 13 '18 at 16:52
$begingroup$
You're welcome.
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038263%2fprove-that-p-p-p-representing-a-linear-transformation-as-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $A$ is the matrix corresponding to the linear operator $p$, then $p(v)=Acdot v forall vinBbb R_2[X]$.
$implies(pcirc p)(v)=p(p(v))=Acdot(p(v))=Acdot(Av)=(Acdot A)v=A^2cdot v$
This means the matrix corresponding to the linear operator $pcirc p$ is $A^2$. Since $A^2=A$, the matrices corresponding to $p$ and $pcirc p$ are identical, which means $p=pcirc p$.
$endgroup$
$begingroup$
Thanks, that's very helpful!
$endgroup$
– nasdaq
Dec 13 '18 at 16:52
$begingroup$
You're welcome.
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:55
add a comment |
$begingroup$
If $A$ is the matrix corresponding to the linear operator $p$, then $p(v)=Acdot v forall vinBbb R_2[X]$.
$implies(pcirc p)(v)=p(p(v))=Acdot(p(v))=Acdot(Av)=(Acdot A)v=A^2cdot v$
This means the matrix corresponding to the linear operator $pcirc p$ is $A^2$. Since $A^2=A$, the matrices corresponding to $p$ and $pcirc p$ are identical, which means $p=pcirc p$.
$endgroup$
$begingroup$
Thanks, that's very helpful!
$endgroup$
– nasdaq
Dec 13 '18 at 16:52
$begingroup$
You're welcome.
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:55
add a comment |
$begingroup$
If $A$ is the matrix corresponding to the linear operator $p$, then $p(v)=Acdot v forall vinBbb R_2[X]$.
$implies(pcirc p)(v)=p(p(v))=Acdot(p(v))=Acdot(Av)=(Acdot A)v=A^2cdot v$
This means the matrix corresponding to the linear operator $pcirc p$ is $A^2$. Since $A^2=A$, the matrices corresponding to $p$ and $pcirc p$ are identical, which means $p=pcirc p$.
$endgroup$
If $A$ is the matrix corresponding to the linear operator $p$, then $p(v)=Acdot v forall vinBbb R_2[X]$.
$implies(pcirc p)(v)=p(p(v))=Acdot(p(v))=Acdot(Av)=(Acdot A)v=A^2cdot v$
This means the matrix corresponding to the linear operator $pcirc p$ is $A^2$. Since $A^2=A$, the matrices corresponding to $p$ and $pcirc p$ are identical, which means $p=pcirc p$.
edited Dec 13 '18 at 16:54
answered Dec 13 '18 at 16:50
Shubham JohriShubham Johri
4,666717
4,666717
$begingroup$
Thanks, that's very helpful!
$endgroup$
– nasdaq
Dec 13 '18 at 16:52
$begingroup$
You're welcome.
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:55
add a comment |
$begingroup$
Thanks, that's very helpful!
$endgroup$
– nasdaq
Dec 13 '18 at 16:52
$begingroup$
You're welcome.
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:55
$begingroup$
Thanks, that's very helpful!
$endgroup$
– nasdaq
Dec 13 '18 at 16:52
$begingroup$
Thanks, that's very helpful!
$endgroup$
– nasdaq
Dec 13 '18 at 16:52
$begingroup$
You're welcome.
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:55
$begingroup$
You're welcome.
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038263%2fprove-that-p-p-p-representing-a-linear-transformation-as-a-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Does $M_B(p)$ mean the matrix of $p$ with respect to the basis $B$?
$endgroup$
– Shubham Johri
Dec 13 '18 at 16:45
$begingroup$
Sure, that's correct.
$endgroup$
– nasdaq
Dec 13 '18 at 16:47