If $f (ymid theta)=(theta + 1)y^theta$, find an estimator for $θ$ by the method of moments.












2














Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function



$$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$



Find an estimator for $theta$ by the method of moments.



I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?










share|cite|improve this question





























    2














    Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function



    $$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$



    Find an estimator for $theta$ by the method of moments.



    I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?










    share|cite|improve this question



























      2












      2








      2







      Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function



      $$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$



      Find an estimator for $theta$ by the method of moments.



      I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?










      share|cite|improve this question















      Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function



      $$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$



      Find an estimator for $theta$ by the method of moments.



      I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?







      probability statistics probability-theory probability-distributions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 10 '18 at 18:43









      StubbornAtom

      5,32411138




      5,32411138










      asked Apr 11 '14 at 4:48









      afsdf dfsaf

      59611235




      59611235






















          2 Answers
          2






          active

          oldest

          votes


















          2














          The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
          $$
          text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
          $$
          Let us obtain the first raw moment of the data.
          $$
          overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
          $$
          Now, we obtain the first raw moment of the sample distribution.
          $$
          begin{align}
          mu&=text{E}[Y]\
          &=int_{y=0}^1 yf(y|theta) dy\
          &=int_{y=0}^1 y(theta+1)y^theta dy\
          &=(theta+1)int_{y=0}^1 y^{theta+1} dy\
          &=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
          &=frac{theta+1}{theta+2}.tag3
          end{align}
          $$
          Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
          $$
          begin{align}
          frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
          hat{theta}+1&=overline{y}(hat{theta}+2)\
          hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
          hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
          hat{theta}(1-overline{y})&=2overline{y}-1\
          hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
          &=-frac{2overline{y}-1}{overline{y}-1}.
          end{align}
          $$



          $$\$$





          $$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$






          share|cite|improve this answer





























            0














            For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.



            Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.



            Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.



            Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f749200%2fif-f-y-mid-theta-theta-1y-theta-find-an-estimator-for-%25ce%25b8-by-the-met%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2














              The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
              $$
              text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
              $$
              Let us obtain the first raw moment of the data.
              $$
              overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
              $$
              Now, we obtain the first raw moment of the sample distribution.
              $$
              begin{align}
              mu&=text{E}[Y]\
              &=int_{y=0}^1 yf(y|theta) dy\
              &=int_{y=0}^1 y(theta+1)y^theta dy\
              &=(theta+1)int_{y=0}^1 y^{theta+1} dy\
              &=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
              &=frac{theta+1}{theta+2}.tag3
              end{align}
              $$
              Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
              $$
              begin{align}
              frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
              hat{theta}+1&=overline{y}(hat{theta}+2)\
              hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
              hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
              hat{theta}(1-overline{y})&=2overline{y}-1\
              hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
              &=-frac{2overline{y}-1}{overline{y}-1}.
              end{align}
              $$



              $$\$$





              $$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$






              share|cite|improve this answer


























                2














                The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
                $$
                text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
                $$
                Let us obtain the first raw moment of the data.
                $$
                overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
                $$
                Now, we obtain the first raw moment of the sample distribution.
                $$
                begin{align}
                mu&=text{E}[Y]\
                &=int_{y=0}^1 yf(y|theta) dy\
                &=int_{y=0}^1 y(theta+1)y^theta dy\
                &=(theta+1)int_{y=0}^1 y^{theta+1} dy\
                &=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
                &=frac{theta+1}{theta+2}.tag3
                end{align}
                $$
                Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
                $$
                begin{align}
                frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
                hat{theta}+1&=overline{y}(hat{theta}+2)\
                hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
                hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
                hat{theta}(1-overline{y})&=2overline{y}-1\
                hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
                &=-frac{2overline{y}-1}{overline{y}-1}.
                end{align}
                $$



                $$\$$





                $$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$






                share|cite|improve this answer
























                  2












                  2








                  2






                  The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
                  $$
                  text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
                  $$
                  Let us obtain the first raw moment of the data.
                  $$
                  overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
                  $$
                  Now, we obtain the first raw moment of the sample distribution.
                  $$
                  begin{align}
                  mu&=text{E}[Y]\
                  &=int_{y=0}^1 yf(y|theta) dy\
                  &=int_{y=0}^1 y(theta+1)y^theta dy\
                  &=(theta+1)int_{y=0}^1 y^{theta+1} dy\
                  &=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
                  &=frac{theta+1}{theta+2}.tag3
                  end{align}
                  $$
                  Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
                  $$
                  begin{align}
                  frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
                  hat{theta}+1&=overline{y}(hat{theta}+2)\
                  hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
                  hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
                  hat{theta}(1-overline{y})&=2overline{y}-1\
                  hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
                  &=-frac{2overline{y}-1}{overline{y}-1}.
                  end{align}
                  $$



                  $$\$$





                  $$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$






                  share|cite|improve this answer












                  The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
                  $$
                  text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
                  $$
                  Let us obtain the first raw moment of the data.
                  $$
                  overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
                  $$
                  Now, we obtain the first raw moment of the sample distribution.
                  $$
                  begin{align}
                  mu&=text{E}[Y]\
                  &=int_{y=0}^1 yf(y|theta) dy\
                  &=int_{y=0}^1 y(theta+1)y^theta dy\
                  &=(theta+1)int_{y=0}^1 y^{theta+1} dy\
                  &=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
                  &=frac{theta+1}{theta+2}.tag3
                  end{align}
                  $$
                  Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
                  $$
                  begin{align}
                  frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
                  hat{theta}+1&=overline{y}(hat{theta}+2)\
                  hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
                  hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
                  hat{theta}(1-overline{y})&=2overline{y}-1\
                  hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
                  &=-frac{2overline{y}-1}{overline{y}-1}.
                  end{align}
                  $$



                  $$\$$





                  $$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 11 '14 at 10:41









                  Tunk-Fey

                  23k969100




                  23k969100























                      0














                      For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.



                      Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.



                      Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.



                      Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$






                      share|cite|improve this answer


























                        0














                        For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.



                        Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.



                        Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.



                        Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$






                        share|cite|improve this answer
























                          0












                          0








                          0






                          For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.



                          Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.



                          Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.



                          Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$






                          share|cite|improve this answer












                          For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.



                          Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.



                          Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.



                          Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Apr 11 '14 at 5:11









                          Erroldactyl

                          605




                          605






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f749200%2fif-f-y-mid-theta-theta-1y-theta-find-an-estimator-for-%25ce%25b8-by-the-met%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bressuire

                              Cabo Verde

                              Gyllenstierna