If $f (ymid theta)=(theta + 1)y^theta$, find an estimator for $θ$ by the method of moments.
Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function
$$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$
Find an estimator for $theta$ by the method of moments.
I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?
probability statistics probability-theory probability-distributions
add a comment |
Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function
$$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$
Find an estimator for $theta$ by the method of moments.
I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?
probability statistics probability-theory probability-distributions
add a comment |
Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function
$$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$
Find an estimator for $theta$ by the method of moments.
I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?
probability statistics probability-theory probability-distributions
Let $Y_1, Y_2, . . . , Y_n$ denote a random sample from the probability density function
$$f (y mid theta)=begin{cases} (theta + 1)y^theta, & 0 < y < 1; theta > −1,\ 0 ,& text{ elsewhere }end{cases}$$
Find an estimator for $theta$ by the method of moments.
I am told that that $μ = frac{theta + 1}{theta + 2} $. I am wondering how do they show this ?
probability statistics probability-theory probability-distributions
probability statistics probability-theory probability-distributions
edited Dec 10 '18 at 18:43
StubbornAtom
5,32411138
5,32411138
asked Apr 11 '14 at 4:48
afsdf dfsaf
59611235
59611235
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
$$
text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
$$
Let us obtain the first raw moment of the data.
$$
overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
$$
Now, we obtain the first raw moment of the sample distribution.
$$
begin{align}
mu&=text{E}[Y]\
&=int_{y=0}^1 yf(y|theta) dy\
&=int_{y=0}^1 y(theta+1)y^theta dy\
&=(theta+1)int_{y=0}^1 y^{theta+1} dy\
&=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
&=frac{theta+1}{theta+2}.tag3
end{align}
$$
Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
$$
begin{align}
frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
hat{theta}+1&=overline{y}(hat{theta}+2)\
hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
hat{theta}(1-overline{y})&=2overline{y}-1\
hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
&=-frac{2overline{y}-1}{overline{y}-1}.
end{align}
$$
$$\$$
$$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$
add a comment |
For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.
Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.
Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.
Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f749200%2fif-f-y-mid-theta-theta-1y-theta-find-an-estimator-for-%25ce%25b8-by-the-met%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
$$
text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
$$
Let us obtain the first raw moment of the data.
$$
overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
$$
Now, we obtain the first raw moment of the sample distribution.
$$
begin{align}
mu&=text{E}[Y]\
&=int_{y=0}^1 yf(y|theta) dy\
&=int_{y=0}^1 y(theta+1)y^theta dy\
&=(theta+1)int_{y=0}^1 y^{theta+1} dy\
&=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
&=frac{theta+1}{theta+2}.tag3
end{align}
$$
Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
$$
begin{align}
frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
hat{theta}+1&=overline{y}(hat{theta}+2)\
hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
hat{theta}(1-overline{y})&=2overline{y}-1\
hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
&=-frac{2overline{y}-1}{overline{y}-1}.
end{align}
$$
$$\$$
$$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$
add a comment |
The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
$$
text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
$$
Let us obtain the first raw moment of the data.
$$
overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
$$
Now, we obtain the first raw moment of the sample distribution.
$$
begin{align}
mu&=text{E}[Y]\
&=int_{y=0}^1 yf(y|theta) dy\
&=int_{y=0}^1 y(theta+1)y^theta dy\
&=(theta+1)int_{y=0}^1 y^{theta+1} dy\
&=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
&=frac{theta+1}{theta+2}.tag3
end{align}
$$
Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
$$
begin{align}
frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
hat{theta}+1&=overline{y}(hat{theta}+2)\
hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
hat{theta}(1-overline{y})&=2overline{y}-1\
hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
&=-frac{2overline{y}-1}{overline{y}-1}.
end{align}
$$
$$\$$
$$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$
add a comment |
The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
$$
text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
$$
Let us obtain the first raw moment of the data.
$$
overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
$$
Now, we obtain the first raw moment of the sample distribution.
$$
begin{align}
mu&=text{E}[Y]\
&=int_{y=0}^1 yf(y|theta) dy\
&=int_{y=0}^1 y(theta+1)y^theta dy\
&=(theta+1)int_{y=0}^1 y^{theta+1} dy\
&=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
&=frac{theta+1}{theta+2}.tag3
end{align}
$$
Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
$$
begin{align}
frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
hat{theta}+1&=overline{y}(hat{theta}+2)\
hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
hat{theta}(1-overline{y})&=2overline{y}-1\
hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
&=-frac{2overline{y}-1}{overline{y}-1}.
end{align}
$$
$$\$$
$$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$
The motivation of the method of moments estimate is that it produces a model that has the same first $n$ raw moments as the data (as represented by the empirical distribution). Let $Y_1, Y_2, cdots, Y_n$ be a random sample, therefore
$$
text{E}left[Y^nright]=frac{1}{n}sum_{i=1}^n y_i^n.tag1
$$
Let us obtain the first raw moment of the data.
$$
overline{y}=frac{1}{n}sum_{i=1}^n y_i.tag2
$$
Now, we obtain the first raw moment of the sample distribution.
$$
begin{align}
mu&=text{E}[Y]\
&=int_{y=0}^1 yf(y|theta) dy\
&=int_{y=0}^1 y(theta+1)y^theta dy\
&=(theta+1)int_{y=0}^1 y^{theta+1} dy\
&=(theta+1)cdotleft.frac{y^{theta+2}}{theta+2}right|_{y=0}^1\
&=frac{theta+1}{theta+2}.tag3
end{align}
$$
Thus, based on $(1)$, from $(2)$ and $(3)$ we obtain
$$
begin{align}
frac{hat{theta}+1}{hat{theta}+2}&=overline{y}\
hat{theta}+1&=overline{y}(hat{theta}+2)\
hat{theta}+1&=overline{y}hat{theta}+2overline{y}\
hat{theta}-overline{y}hat{theta}&=2overline{y}-1\
hat{theta}(1-overline{y})&=2overline{y}-1\
hat{theta}&=frac{2overline{y}-1}{1-overline{y}}\
&=-frac{2overline{y}-1}{overline{y}-1}.
end{align}
$$
$$\$$
$$Largecolor{blue}{text{# }mathbb{Q.E.D.}text{ #}}$$
answered Apr 11 '14 at 10:41
Tunk-Fey
23k969100
23k969100
add a comment |
add a comment |
For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.
Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.
Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.
Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$
add a comment |
For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.
Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.
Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.
Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$
add a comment |
For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.
Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.
Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.
Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$
For the method of moments, you want to estimate the parameter $theta$ as a function of the sample mean, $bar{y}$.
Begin by finding the expected value $mu = int_0^1y*(theta +1)*y^{theta}dy = int_0^1(theta +1)*y^{theta+1}dy = frac{theta +1}{theta +2}*(y^{theta+2}|_0^1 = frac{theta+1}{theta +2}$.
Now replace $mu$ with the sample mean, $bar{y} = frac{1}{n}sum_{i=1}^nY_i$: $bar{y} = frac{theta+1}{theta +2}$.
Now solve $theta$ in terms of $bar{y}$: $hat{theta} = frac{1-2bar{y}}{bar{y}-1}$
answered Apr 11 '14 at 5:11
Erroldactyl
605
605
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f749200%2fif-f-y-mid-theta-theta-1y-theta-find-an-estimator-for-%25ce%25b8-by-the-met%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown