Prove that ${x^n}$ is Cauchy in $Ssubseteq ell_infty$












0














I'm kind of new into Functional analysis. So, I have the following question bothering me. Let $S$ be the set of sequences having only a finite number of non-zero terms. Clearly, $Ssubseteq ell_infty$. Take ${x^n}$ in $S$ where $x^n=(1,frac{1}{2},frac{1}{3},cdots,frac{1}{n},0,0,cdots).$ I want to prove that ${x^n}$ is Cauchy in $S.$



MY TRIAL



Let $mgeq n.$ Then,
begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|end{align}
By convergence of $frac{1}{n}$ and $frac{1}{m}$ for each $m$ and $n$, there exists $NinBbb{N}$ such that
begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|=frac{1}{n}-frac{1}{m}<epsilon,;;forall;mgeq ngeq N. end{align}



Please check if I'm right or wrong. If I'm wrong, kindly help out. Thanks










share|cite|improve this question





























    0














    I'm kind of new into Functional analysis. So, I have the following question bothering me. Let $S$ be the set of sequences having only a finite number of non-zero terms. Clearly, $Ssubseteq ell_infty$. Take ${x^n}$ in $S$ where $x^n=(1,frac{1}{2},frac{1}{3},cdots,frac{1}{n},0,0,cdots).$ I want to prove that ${x^n}$ is Cauchy in $S.$



    MY TRIAL



    Let $mgeq n.$ Then,
    begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|end{align}
    By convergence of $frac{1}{n}$ and $frac{1}{m}$ for each $m$ and $n$, there exists $NinBbb{N}$ such that
    begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|=frac{1}{n}-frac{1}{m}<epsilon,;;forall;mgeq ngeq N. end{align}



    Please check if I'm right or wrong. If I'm wrong, kindly help out. Thanks










    share|cite|improve this question



























      0












      0








      0


      2





      I'm kind of new into Functional analysis. So, I have the following question bothering me. Let $S$ be the set of sequences having only a finite number of non-zero terms. Clearly, $Ssubseteq ell_infty$. Take ${x^n}$ in $S$ where $x^n=(1,frac{1}{2},frac{1}{3},cdots,frac{1}{n},0,0,cdots).$ I want to prove that ${x^n}$ is Cauchy in $S.$



      MY TRIAL



      Let $mgeq n.$ Then,
      begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|end{align}
      By convergence of $frac{1}{n}$ and $frac{1}{m}$ for each $m$ and $n$, there exists $NinBbb{N}$ such that
      begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|=frac{1}{n}-frac{1}{m}<epsilon,;;forall;mgeq ngeq N. end{align}



      Please check if I'm right or wrong. If I'm wrong, kindly help out. Thanks










      share|cite|improve this question















      I'm kind of new into Functional analysis. So, I have the following question bothering me. Let $S$ be the set of sequences having only a finite number of non-zero terms. Clearly, $Ssubseteq ell_infty$. Take ${x^n}$ in $S$ where $x^n=(1,frac{1}{2},frac{1}{3},cdots,frac{1}{n},0,0,cdots).$ I want to prove that ${x^n}$ is Cauchy in $S.$



      MY TRIAL



      Let $mgeq n.$ Then,
      begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|end{align}
      By convergence of $frac{1}{n}$ and $frac{1}{m}$ for each $m$ and $n$, there exists $NinBbb{N}$ such that
      begin{align}Vert x^n-x^m Vert_ {ell_infty}=suplimits_{m,nin Bbb{N}}left|frac{1}{m}-frac{1}{n} right|=frac{1}{n}-frac{1}{m}<epsilon,;;forall;mgeq ngeq N. end{align}



      Please check if I'm right or wrong. If I'm wrong, kindly help out. Thanks







      functional-analysis analysis convergence normed-spaces cauchy-sequences






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 '18 at 9:54









      José Carlos Santos

      152k22123225




      152k22123225










      asked Dec 13 '18 at 9:52









      Omojola MichealOmojola Micheal

      1,692324




      1,692324






















          1 Answer
          1






          active

          oldest

          votes


















          2














          Actually.$$mgeqslant nimplieslVert x^n-x^mrVert_infty=begin{cases}0&text{ if }m=n\dfrac1{n+1}&text{ otherwise,}end{cases}$$since, if $m>n$,$$lVert x^n-x^mrVert_infty=supleft{0,frac1{n+1},frac1{n+2},ldots,frac1mright}=frac1{n+1}.$$So, given $varepsilon>0$, take $Ninmathbb{N}$ such that $frac1N<varepsilon$ and then$$mgeqslant ngeqslant NimplieslVert x^n-x^mrVert_infty<varepsilon.$$






          share|cite|improve this answer





















          • That was nice! I am grateful! +1!
            – Omojola Micheal
            Dec 13 '18 at 10:14













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037822%2fprove-that-xn-is-cauchy-in-s-subseteq-ell-infty%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2














          Actually.$$mgeqslant nimplieslVert x^n-x^mrVert_infty=begin{cases}0&text{ if }m=n\dfrac1{n+1}&text{ otherwise,}end{cases}$$since, if $m>n$,$$lVert x^n-x^mrVert_infty=supleft{0,frac1{n+1},frac1{n+2},ldots,frac1mright}=frac1{n+1}.$$So, given $varepsilon>0$, take $Ninmathbb{N}$ such that $frac1N<varepsilon$ and then$$mgeqslant ngeqslant NimplieslVert x^n-x^mrVert_infty<varepsilon.$$






          share|cite|improve this answer





















          • That was nice! I am grateful! +1!
            – Omojola Micheal
            Dec 13 '18 at 10:14


















          2














          Actually.$$mgeqslant nimplieslVert x^n-x^mrVert_infty=begin{cases}0&text{ if }m=n\dfrac1{n+1}&text{ otherwise,}end{cases}$$since, if $m>n$,$$lVert x^n-x^mrVert_infty=supleft{0,frac1{n+1},frac1{n+2},ldots,frac1mright}=frac1{n+1}.$$So, given $varepsilon>0$, take $Ninmathbb{N}$ such that $frac1N<varepsilon$ and then$$mgeqslant ngeqslant NimplieslVert x^n-x^mrVert_infty<varepsilon.$$






          share|cite|improve this answer





















          • That was nice! I am grateful! +1!
            – Omojola Micheal
            Dec 13 '18 at 10:14
















          2












          2








          2






          Actually.$$mgeqslant nimplieslVert x^n-x^mrVert_infty=begin{cases}0&text{ if }m=n\dfrac1{n+1}&text{ otherwise,}end{cases}$$since, if $m>n$,$$lVert x^n-x^mrVert_infty=supleft{0,frac1{n+1},frac1{n+2},ldots,frac1mright}=frac1{n+1}.$$So, given $varepsilon>0$, take $Ninmathbb{N}$ such that $frac1N<varepsilon$ and then$$mgeqslant ngeqslant NimplieslVert x^n-x^mrVert_infty<varepsilon.$$






          share|cite|improve this answer












          Actually.$$mgeqslant nimplieslVert x^n-x^mrVert_infty=begin{cases}0&text{ if }m=n\dfrac1{n+1}&text{ otherwise,}end{cases}$$since, if $m>n$,$$lVert x^n-x^mrVert_infty=supleft{0,frac1{n+1},frac1{n+2},ldots,frac1mright}=frac1{n+1}.$$So, given $varepsilon>0$, take $Ninmathbb{N}$ such that $frac1N<varepsilon$ and then$$mgeqslant ngeqslant NimplieslVert x^n-x^mrVert_infty<varepsilon.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 13 '18 at 9:58









          José Carlos SantosJosé Carlos Santos

          152k22123225




          152k22123225












          • That was nice! I am grateful! +1!
            – Omojola Micheal
            Dec 13 '18 at 10:14




















          • That was nice! I am grateful! +1!
            – Omojola Micheal
            Dec 13 '18 at 10:14


















          That was nice! I am grateful! +1!
          – Omojola Micheal
          Dec 13 '18 at 10:14






          That was nice! I am grateful! +1!
          – Omojola Micheal
          Dec 13 '18 at 10:14




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037822%2fprove-that-xn-is-cauchy-in-s-subseteq-ell-infty%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna