integral $ int_0^{frac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}(x+frac{pi}{3})}right)...
We want to evaluate
$ displaystyle int_0^{frac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}(x+frac{pi}{3})}right) mathrm{d}x$.
We tried contour integration which was not helpful. Then we started trying to use symmetries, this also doesn't work.
real-analysis integration complex-analysis limits
add a comment |
We want to evaluate
$ displaystyle int_0^{frac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}(x+frac{pi}{3})}right) mathrm{d}x$.
We tried contour integration which was not helpful. Then we started trying to use symmetries, this also doesn't work.
real-analysis integration complex-analysis limits
1
This is not exactly the same thing, but I think it will help: math.stackexchange.com/questions/305124/…
– Ron Gordon
Feb 25 '18 at 2:30
Please do not use pictures for critical portions of your post. Pictures may not be legible, cannot be searched and are not view-able to some, such as those who use screen readers.
– GNUSupporter 8964民主女神 地下教會
Dec 13 '18 at 9:44
add a comment |
We want to evaluate
$ displaystyle int_0^{frac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}(x+frac{pi}{3})}right) mathrm{d}x$.
We tried contour integration which was not helpful. Then we started trying to use symmetries, this also doesn't work.
real-analysis integration complex-analysis limits
We want to evaluate
$ displaystyle int_0^{frac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}(x+frac{pi}{3})}right) mathrm{d}x$.
We tried contour integration which was not helpful. Then we started trying to use symmetries, this also doesn't work.
real-analysis integration complex-analysis limits
real-analysis integration complex-analysis limits
edited Feb 24 '18 at 23:37
Arjang
5,57362363
5,57362363
asked Feb 24 '18 at 21:51
JanJan
116113
116113
1
This is not exactly the same thing, but I think it will help: math.stackexchange.com/questions/305124/…
– Ron Gordon
Feb 25 '18 at 2:30
Please do not use pictures for critical portions of your post. Pictures may not be legible, cannot be searched and are not view-able to some, such as those who use screen readers.
– GNUSupporter 8964民主女神 地下教會
Dec 13 '18 at 9:44
add a comment |
1
This is not exactly the same thing, but I think it will help: math.stackexchange.com/questions/305124/…
– Ron Gordon
Feb 25 '18 at 2:30
Please do not use pictures for critical portions of your post. Pictures may not be legible, cannot be searched and are not view-able to some, such as those who use screen readers.
– GNUSupporter 8964民主女神 地下教會
Dec 13 '18 at 9:44
1
1
This is not exactly the same thing, but I think it will help: math.stackexchange.com/questions/305124/…
– Ron Gordon
Feb 25 '18 at 2:30
This is not exactly the same thing, but I think it will help: math.stackexchange.com/questions/305124/…
– Ron Gordon
Feb 25 '18 at 2:30
Please do not use pictures for critical portions of your post. Pictures may not be legible, cannot be searched and are not view-able to some, such as those who use screen readers.
– GNUSupporter 8964民主女神 地下教會
Dec 13 '18 at 9:44
Please do not use pictures for critical portions of your post. Pictures may not be legible, cannot be searched and are not view-able to some, such as those who use screen readers.
– GNUSupporter 8964民主女神 地下教會
Dec 13 '18 at 9:44
add a comment |
5 Answers
5
active
oldest
votes
Here is an approach that uses real methods only.
begin{align*}
I &= int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx\
&= int_0^{pi/3} ln (sin x) , dx - int_0^{pi/3} ln left (sin left (x + frac{pi}{3} right ) right ) , dx.
end{align*}
If in the second integral appearing on the right a substitution of $x mapsto x - frac{pi}{3}$ is enforced, one has
begin{align*}
I &= int_0^{pi/3} ln (sin x) , dx - int_{pi/3}^{2pi/3} ln (sin x) , dx\
&= 2 int_0^{pi/3} ln (sin x) , dx - int_0^{2pi/3} ln (sin x) , dx.tag1
end{align*}
Now consider the integral
$$I(alpha) = int_0^alpha ln (sin x) , dx, quad 0 < alpha < pi.tag2$$
Taking advantage of the well-known identity
$$ln (sin x) = -ln 2 - sum_{k = 1}^infty frac{cos (2kx)}{k}, quad 0 < x < pi,$$
substituting this result into (2), after interchanging the summation with the integration before integrating one finds
$$I(alpha) = -alpha ln 2 - frac{1}{2} sum_{k = 1}^infty frac{sin (2k alpha)}{k^2} = -alpha ln 2 - frac{1}{2} text{Cl}_2 (alpha).$$
Here $text{Cl}_2 (varphi)$ denotes the Clausen function of order two.
In terms of the Clausen function of order two the integral in (1) can be written as
$$I = -text{Cl}_2 left (frac{2pi}{3} right ) + frac{1}{2} text{Cl}_2 left (frac{4pi}{3} right ).tag3$$
From the duplication formula for the Clausen function of order two, namely
$$text{Cl}_2 (2theta) = 2 text{Cl}_2 (theta) - 2 text{Cl}_2 (pi - theta), quad 0 < theta < pi,$$
if we set $theta = 2pi/3$ in the above duplication formula, as
$$text{Cl}_2 left (frac{4pi}{3} right ) = 2 text{Cl}_2 left (frac{2pi}{3} right ) - 2 text{Cl}_2 left (frac{pi}{3} right ),$$
the expression for our integral in (3) can be expressed more simply as
$$int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx = -text{Cl}_2 left (frac{pi}{3} right ).$$
add a comment |
Hint:
As shown in this answer,
$$
log(sin(x))=-log(2)-sum_{k=1}^inftyfrac{cos(2kx)}{k}
$$
Therefore,
$$
intlog(sin(x)),mathrm{d}x=-xlog(2)-sum_{k=1}^inftyfrac{sin(2kx)}{2k^2}
$$
Applying the hint:
$$
begin{align}
int_0^{pi/3}logleft(frac{sin(x)}{sin(x+pi/3)}right),mathrm{d}x
&=int_0^{pi/3}log(sin(x)),mathrm{d}x-int_{pi/3}^{2pi/3}log(sin(x)),mathrm{d}x\
&=-2sum_{k=1}^inftyfrac{sin(2kpi/3)}{2k^2}+sum_{k=1}^inftyfrac{sin(4kpi/3)}{2k^2}\
&=-sum_{k=1}^inftyfrac{sin(2kpi/3)}{k^2}+2sum_{k=1}^inftyfrac{sin(4kpi/3)}{4k^2}\
&=sum_{k=1}^infty(-1)^kfrac{sin(2kpi/3)}{k^2}\
&=-sum_{k=1}^inftyfrac{sin(kpi/3)}{k^2}\
&=-frac{sqrt3}2sum_{k=0}^infty(-1)^kleft(frac1{(3k+1)^2}+frac1{(3k+2)^2}right)
end{align}
$$
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
int_{-pi/6}^{pi/6}lnpars{sinpars{x + pi/6} over cospars{x}},dd x
\[5mm] = &
int_{-pi/6}^{pi/6}lnpars{{root{3} over 2},tanpars{x} + { 1 over 2}}
,dd x
,,,,,,stackrel{large x = arctanpars{2t - 1 over root{3}}}{=},,,
,,,
{root{3} over 2}int_{0}^{1}{lnpars{t} over t^{2} - t + 1},dd t
\[5mm] = &
{root{3} over 2}int_{0}^{1}{lnpars{t} over pars{t - r}pars{t - bar{r}}},dd tlabel{1}tag{1}
end{align}
where $ds{r equiv {1 over 2} + {root{3} over 2},ic = exppars{{pi over 3},ic}}$
eqref{1} is reduced to
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
{root{3} over 2}int_{0}^{1}lnpars{t}
pars{{1 over t - r} - {1 over t - bar{r}}}{1 over r - bar{r}},dd t
\[5mm] = &
{root{3} over 2},{1 over 2ic,Impars{r}},2ic,Imint_{0}^{1}{lnpars{t} over t - r},dd t =
-,Imint_{0}^{1}{lnpars{t} over r - t},dd t =
-,Imint_{0}^{1/r}{lnpars{rt} over 1 - t},dd t
\[5mm] = &
-,Imint_{0}^{largebar{r}}{lnpars{1 - t} over t},dd t =
Imint_{0}^{largebar{r}}mrm{Li}_{2}'pars{t},dd tqquad
pars{~mrm{Li}_{s} mbox{is the} PolyLogarithm Function~}
\[5mm] implies &
bbx{int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x = Immrm{Li}_{2}pars{expo{-piic/3}} approx -1.0149}
end{align}
add a comment |
The given integral can be approached as follows:
$$begin{eqnarray*} mathcal{I}=int_{0}^{pi/3}logleft(frac{sin x}{frac{1}{2}sin x+frac{sqrt{3}}{2}cos x}right),dx&=&frac{pi}{3}log 2-int_{0}^{pi/3}log(1+sqrt{3}cottheta),dtheta\&=&frac{pi}{3}log 2-int_{1/sqrt{3}}^{+infty}frac{log(1+tsqrt{3})}{1+t^2},dt\&=&frac{pi}
{3}log2-int_{0}^{sqrt{3}}frac{logleft(1+frac{sqrt{3}}{t}right)}{1+t^2},dt\&=&frac{pi}{3}log2-sqrt{3}int_{1}^{+infty}frac{log(z+1)}{3+z^2},dz\(text{trigamma})qquad&=&-frac{1}{24sqrt{3}}left(psi'left(tfrac{1}{6}right)+psi'left(tfrac{1}{3}right)-psi'left(tfrac{2}{3}right)-psi'left(tfrac{5}{6}right)right)end{eqnarray*} $$
from which it follows that
$$mathcal{I}=-frac{sqrt{3}}{2}sum_{kgeq 0}left(frac{1}{(6k+1)^2}+frac{1}{(6k+2)^2}-frac{1}{(6k+4)^2}-frac{1}{(6k+5)^2}right).tag{1}$$
We don't have a really nicer closed form, but the terms of the last series behaves like $frac{1}{18k^3}$ for large values of $k$, ensuring a decent speed of convergence of the partial sums. Due to the reflection formulas for the trigamma function we have
$$sum_{kgeq 0}left(frac{1}{(6k+1)^2}color{red}{+}frac{1}{(6k+5)^2}right)=frac{pi^2}{9},qquad sum_{kgeq 0}left(frac{1}{(6k+2)^2}color{red}{+}frac{1}{(6k+4)^2}right)=frac{pi^2}{27} $$
which can be used to devise acceleration tricks, even if the signs pattern in the previous identity is the "wrong" one. Numerically $mathcal{I}approx -1.0149416$.
$(1)$ can be proved also by applying termwise integration to the Fourier series of $logsin(x)$, which is well-known.
add a comment |
Hint: $displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x=displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}({mathrm{sin}(x)})dx-int_0^{dfrac{pi}{3}} lnleft({mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x$
This is a hint towards what?
– Jack D'Aurizio
Feb 25 '18 at 17:41
@JackD'Aurizio Toward looking differently at how he could solve his problem because this makes solving the problem easier I believe.
– Mehrdad Zandigohar
Feb 25 '18 at 18:05
I believe that is not true. Both the integrals in the RHS are related to the dilogarithm function evaluated at the third roots of unity. $logfrac{a}{b}=log a-log b$ (for $a,b>0$) is obvious and not really helpful in reaching a "closed" form.
– Jack D'Aurizio
Feb 25 '18 at 18:08
I myself knew how to integrate $ln(sin(x))$ and this made me think this is a better way. It may be obvious but one may make the problem solving easier by this. As omegadot did in his answer too. Anyway, aren't we free to state the things we believe are helpful?
– Mehrdad Zandigohar
Feb 25 '18 at 18:14
Better to be sure they are: comments are best suited for uncertainty. What is $int_{0}^{pi/5}logsin(x),dx$, for instance?
– Jack D'Aurizio
Feb 25 '18 at 18:16
|
show 2 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2665211%2fintegral-int-0-frac-pi3-mathrmln-left-frac-mathrmsinx-mathrm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
Here is an approach that uses real methods only.
begin{align*}
I &= int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx\
&= int_0^{pi/3} ln (sin x) , dx - int_0^{pi/3} ln left (sin left (x + frac{pi}{3} right ) right ) , dx.
end{align*}
If in the second integral appearing on the right a substitution of $x mapsto x - frac{pi}{3}$ is enforced, one has
begin{align*}
I &= int_0^{pi/3} ln (sin x) , dx - int_{pi/3}^{2pi/3} ln (sin x) , dx\
&= 2 int_0^{pi/3} ln (sin x) , dx - int_0^{2pi/3} ln (sin x) , dx.tag1
end{align*}
Now consider the integral
$$I(alpha) = int_0^alpha ln (sin x) , dx, quad 0 < alpha < pi.tag2$$
Taking advantage of the well-known identity
$$ln (sin x) = -ln 2 - sum_{k = 1}^infty frac{cos (2kx)}{k}, quad 0 < x < pi,$$
substituting this result into (2), after interchanging the summation with the integration before integrating one finds
$$I(alpha) = -alpha ln 2 - frac{1}{2} sum_{k = 1}^infty frac{sin (2k alpha)}{k^2} = -alpha ln 2 - frac{1}{2} text{Cl}_2 (alpha).$$
Here $text{Cl}_2 (varphi)$ denotes the Clausen function of order two.
In terms of the Clausen function of order two the integral in (1) can be written as
$$I = -text{Cl}_2 left (frac{2pi}{3} right ) + frac{1}{2} text{Cl}_2 left (frac{4pi}{3} right ).tag3$$
From the duplication formula for the Clausen function of order two, namely
$$text{Cl}_2 (2theta) = 2 text{Cl}_2 (theta) - 2 text{Cl}_2 (pi - theta), quad 0 < theta < pi,$$
if we set $theta = 2pi/3$ in the above duplication formula, as
$$text{Cl}_2 left (frac{4pi}{3} right ) = 2 text{Cl}_2 left (frac{2pi}{3} right ) - 2 text{Cl}_2 left (frac{pi}{3} right ),$$
the expression for our integral in (3) can be expressed more simply as
$$int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx = -text{Cl}_2 left (frac{pi}{3} right ).$$
add a comment |
Here is an approach that uses real methods only.
begin{align*}
I &= int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx\
&= int_0^{pi/3} ln (sin x) , dx - int_0^{pi/3} ln left (sin left (x + frac{pi}{3} right ) right ) , dx.
end{align*}
If in the second integral appearing on the right a substitution of $x mapsto x - frac{pi}{3}$ is enforced, one has
begin{align*}
I &= int_0^{pi/3} ln (sin x) , dx - int_{pi/3}^{2pi/3} ln (sin x) , dx\
&= 2 int_0^{pi/3} ln (sin x) , dx - int_0^{2pi/3} ln (sin x) , dx.tag1
end{align*}
Now consider the integral
$$I(alpha) = int_0^alpha ln (sin x) , dx, quad 0 < alpha < pi.tag2$$
Taking advantage of the well-known identity
$$ln (sin x) = -ln 2 - sum_{k = 1}^infty frac{cos (2kx)}{k}, quad 0 < x < pi,$$
substituting this result into (2), after interchanging the summation with the integration before integrating one finds
$$I(alpha) = -alpha ln 2 - frac{1}{2} sum_{k = 1}^infty frac{sin (2k alpha)}{k^2} = -alpha ln 2 - frac{1}{2} text{Cl}_2 (alpha).$$
Here $text{Cl}_2 (varphi)$ denotes the Clausen function of order two.
In terms of the Clausen function of order two the integral in (1) can be written as
$$I = -text{Cl}_2 left (frac{2pi}{3} right ) + frac{1}{2} text{Cl}_2 left (frac{4pi}{3} right ).tag3$$
From the duplication formula for the Clausen function of order two, namely
$$text{Cl}_2 (2theta) = 2 text{Cl}_2 (theta) - 2 text{Cl}_2 (pi - theta), quad 0 < theta < pi,$$
if we set $theta = 2pi/3$ in the above duplication formula, as
$$text{Cl}_2 left (frac{4pi}{3} right ) = 2 text{Cl}_2 left (frac{2pi}{3} right ) - 2 text{Cl}_2 left (frac{pi}{3} right ),$$
the expression for our integral in (3) can be expressed more simply as
$$int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx = -text{Cl}_2 left (frac{pi}{3} right ).$$
add a comment |
Here is an approach that uses real methods only.
begin{align*}
I &= int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx\
&= int_0^{pi/3} ln (sin x) , dx - int_0^{pi/3} ln left (sin left (x + frac{pi}{3} right ) right ) , dx.
end{align*}
If in the second integral appearing on the right a substitution of $x mapsto x - frac{pi}{3}$ is enforced, one has
begin{align*}
I &= int_0^{pi/3} ln (sin x) , dx - int_{pi/3}^{2pi/3} ln (sin x) , dx\
&= 2 int_0^{pi/3} ln (sin x) , dx - int_0^{2pi/3} ln (sin x) , dx.tag1
end{align*}
Now consider the integral
$$I(alpha) = int_0^alpha ln (sin x) , dx, quad 0 < alpha < pi.tag2$$
Taking advantage of the well-known identity
$$ln (sin x) = -ln 2 - sum_{k = 1}^infty frac{cos (2kx)}{k}, quad 0 < x < pi,$$
substituting this result into (2), after interchanging the summation with the integration before integrating one finds
$$I(alpha) = -alpha ln 2 - frac{1}{2} sum_{k = 1}^infty frac{sin (2k alpha)}{k^2} = -alpha ln 2 - frac{1}{2} text{Cl}_2 (alpha).$$
Here $text{Cl}_2 (varphi)$ denotes the Clausen function of order two.
In terms of the Clausen function of order two the integral in (1) can be written as
$$I = -text{Cl}_2 left (frac{2pi}{3} right ) + frac{1}{2} text{Cl}_2 left (frac{4pi}{3} right ).tag3$$
From the duplication formula for the Clausen function of order two, namely
$$text{Cl}_2 (2theta) = 2 text{Cl}_2 (theta) - 2 text{Cl}_2 (pi - theta), quad 0 < theta < pi,$$
if we set $theta = 2pi/3$ in the above duplication formula, as
$$text{Cl}_2 left (frac{4pi}{3} right ) = 2 text{Cl}_2 left (frac{2pi}{3} right ) - 2 text{Cl}_2 left (frac{pi}{3} right ),$$
the expression for our integral in (3) can be expressed more simply as
$$int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx = -text{Cl}_2 left (frac{pi}{3} right ).$$
Here is an approach that uses real methods only.
begin{align*}
I &= int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx\
&= int_0^{pi/3} ln (sin x) , dx - int_0^{pi/3} ln left (sin left (x + frac{pi}{3} right ) right ) , dx.
end{align*}
If in the second integral appearing on the right a substitution of $x mapsto x - frac{pi}{3}$ is enforced, one has
begin{align*}
I &= int_0^{pi/3} ln (sin x) , dx - int_{pi/3}^{2pi/3} ln (sin x) , dx\
&= 2 int_0^{pi/3} ln (sin x) , dx - int_0^{2pi/3} ln (sin x) , dx.tag1
end{align*}
Now consider the integral
$$I(alpha) = int_0^alpha ln (sin x) , dx, quad 0 < alpha < pi.tag2$$
Taking advantage of the well-known identity
$$ln (sin x) = -ln 2 - sum_{k = 1}^infty frac{cos (2kx)}{k}, quad 0 < x < pi,$$
substituting this result into (2), after interchanging the summation with the integration before integrating one finds
$$I(alpha) = -alpha ln 2 - frac{1}{2} sum_{k = 1}^infty frac{sin (2k alpha)}{k^2} = -alpha ln 2 - frac{1}{2} text{Cl}_2 (alpha).$$
Here $text{Cl}_2 (varphi)$ denotes the Clausen function of order two.
In terms of the Clausen function of order two the integral in (1) can be written as
$$I = -text{Cl}_2 left (frac{2pi}{3} right ) + frac{1}{2} text{Cl}_2 left (frac{4pi}{3} right ).tag3$$
From the duplication formula for the Clausen function of order two, namely
$$text{Cl}_2 (2theta) = 2 text{Cl}_2 (theta) - 2 text{Cl}_2 (pi - theta), quad 0 < theta < pi,$$
if we set $theta = 2pi/3$ in the above duplication formula, as
$$text{Cl}_2 left (frac{4pi}{3} right ) = 2 text{Cl}_2 left (frac{2pi}{3} right ) - 2 text{Cl}_2 left (frac{pi}{3} right ),$$
the expression for our integral in (3) can be expressed more simply as
$$int_0^{pi/3} ln left (frac{sin x}{sin left (x + frac{pi}{3} right )} right ) , dx = -text{Cl}_2 left (frac{pi}{3} right ).$$
edited Feb 25 '18 at 0:06
answered Feb 24 '18 at 23:33
omegadotomegadot
4,8372727
4,8372727
add a comment |
add a comment |
Hint:
As shown in this answer,
$$
log(sin(x))=-log(2)-sum_{k=1}^inftyfrac{cos(2kx)}{k}
$$
Therefore,
$$
intlog(sin(x)),mathrm{d}x=-xlog(2)-sum_{k=1}^inftyfrac{sin(2kx)}{2k^2}
$$
Applying the hint:
$$
begin{align}
int_0^{pi/3}logleft(frac{sin(x)}{sin(x+pi/3)}right),mathrm{d}x
&=int_0^{pi/3}log(sin(x)),mathrm{d}x-int_{pi/3}^{2pi/3}log(sin(x)),mathrm{d}x\
&=-2sum_{k=1}^inftyfrac{sin(2kpi/3)}{2k^2}+sum_{k=1}^inftyfrac{sin(4kpi/3)}{2k^2}\
&=-sum_{k=1}^inftyfrac{sin(2kpi/3)}{k^2}+2sum_{k=1}^inftyfrac{sin(4kpi/3)}{4k^2}\
&=sum_{k=1}^infty(-1)^kfrac{sin(2kpi/3)}{k^2}\
&=-sum_{k=1}^inftyfrac{sin(kpi/3)}{k^2}\
&=-frac{sqrt3}2sum_{k=0}^infty(-1)^kleft(frac1{(3k+1)^2}+frac1{(3k+2)^2}right)
end{align}
$$
add a comment |
Hint:
As shown in this answer,
$$
log(sin(x))=-log(2)-sum_{k=1}^inftyfrac{cos(2kx)}{k}
$$
Therefore,
$$
intlog(sin(x)),mathrm{d}x=-xlog(2)-sum_{k=1}^inftyfrac{sin(2kx)}{2k^2}
$$
Applying the hint:
$$
begin{align}
int_0^{pi/3}logleft(frac{sin(x)}{sin(x+pi/3)}right),mathrm{d}x
&=int_0^{pi/3}log(sin(x)),mathrm{d}x-int_{pi/3}^{2pi/3}log(sin(x)),mathrm{d}x\
&=-2sum_{k=1}^inftyfrac{sin(2kpi/3)}{2k^2}+sum_{k=1}^inftyfrac{sin(4kpi/3)}{2k^2}\
&=-sum_{k=1}^inftyfrac{sin(2kpi/3)}{k^2}+2sum_{k=1}^inftyfrac{sin(4kpi/3)}{4k^2}\
&=sum_{k=1}^infty(-1)^kfrac{sin(2kpi/3)}{k^2}\
&=-sum_{k=1}^inftyfrac{sin(kpi/3)}{k^2}\
&=-frac{sqrt3}2sum_{k=0}^infty(-1)^kleft(frac1{(3k+1)^2}+frac1{(3k+2)^2}right)
end{align}
$$
add a comment |
Hint:
As shown in this answer,
$$
log(sin(x))=-log(2)-sum_{k=1}^inftyfrac{cos(2kx)}{k}
$$
Therefore,
$$
intlog(sin(x)),mathrm{d}x=-xlog(2)-sum_{k=1}^inftyfrac{sin(2kx)}{2k^2}
$$
Applying the hint:
$$
begin{align}
int_0^{pi/3}logleft(frac{sin(x)}{sin(x+pi/3)}right),mathrm{d}x
&=int_0^{pi/3}log(sin(x)),mathrm{d}x-int_{pi/3}^{2pi/3}log(sin(x)),mathrm{d}x\
&=-2sum_{k=1}^inftyfrac{sin(2kpi/3)}{2k^2}+sum_{k=1}^inftyfrac{sin(4kpi/3)}{2k^2}\
&=-sum_{k=1}^inftyfrac{sin(2kpi/3)}{k^2}+2sum_{k=1}^inftyfrac{sin(4kpi/3)}{4k^2}\
&=sum_{k=1}^infty(-1)^kfrac{sin(2kpi/3)}{k^2}\
&=-sum_{k=1}^inftyfrac{sin(kpi/3)}{k^2}\
&=-frac{sqrt3}2sum_{k=0}^infty(-1)^kleft(frac1{(3k+1)^2}+frac1{(3k+2)^2}right)
end{align}
$$
Hint:
As shown in this answer,
$$
log(sin(x))=-log(2)-sum_{k=1}^inftyfrac{cos(2kx)}{k}
$$
Therefore,
$$
intlog(sin(x)),mathrm{d}x=-xlog(2)-sum_{k=1}^inftyfrac{sin(2kx)}{2k^2}
$$
Applying the hint:
$$
begin{align}
int_0^{pi/3}logleft(frac{sin(x)}{sin(x+pi/3)}right),mathrm{d}x
&=int_0^{pi/3}log(sin(x)),mathrm{d}x-int_{pi/3}^{2pi/3}log(sin(x)),mathrm{d}x\
&=-2sum_{k=1}^inftyfrac{sin(2kpi/3)}{2k^2}+sum_{k=1}^inftyfrac{sin(4kpi/3)}{2k^2}\
&=-sum_{k=1}^inftyfrac{sin(2kpi/3)}{k^2}+2sum_{k=1}^inftyfrac{sin(4kpi/3)}{4k^2}\
&=sum_{k=1}^infty(-1)^kfrac{sin(2kpi/3)}{k^2}\
&=-sum_{k=1}^inftyfrac{sin(kpi/3)}{k^2}\
&=-frac{sqrt3}2sum_{k=0}^infty(-1)^kleft(frac1{(3k+1)^2}+frac1{(3k+2)^2}right)
end{align}
$$
edited Feb 25 '18 at 21:40
answered Feb 25 '18 at 20:47
robjohn♦robjohn
265k27303626
265k27303626
add a comment |
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
int_{-pi/6}^{pi/6}lnpars{sinpars{x + pi/6} over cospars{x}},dd x
\[5mm] = &
int_{-pi/6}^{pi/6}lnpars{{root{3} over 2},tanpars{x} + { 1 over 2}}
,dd x
,,,,,,stackrel{large x = arctanpars{2t - 1 over root{3}}}{=},,,
,,,
{root{3} over 2}int_{0}^{1}{lnpars{t} over t^{2} - t + 1},dd t
\[5mm] = &
{root{3} over 2}int_{0}^{1}{lnpars{t} over pars{t - r}pars{t - bar{r}}},dd tlabel{1}tag{1}
end{align}
where $ds{r equiv {1 over 2} + {root{3} over 2},ic = exppars{{pi over 3},ic}}$
eqref{1} is reduced to
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
{root{3} over 2}int_{0}^{1}lnpars{t}
pars{{1 over t - r} - {1 over t - bar{r}}}{1 over r - bar{r}},dd t
\[5mm] = &
{root{3} over 2},{1 over 2ic,Impars{r}},2ic,Imint_{0}^{1}{lnpars{t} over t - r},dd t =
-,Imint_{0}^{1}{lnpars{t} over r - t},dd t =
-,Imint_{0}^{1/r}{lnpars{rt} over 1 - t},dd t
\[5mm] = &
-,Imint_{0}^{largebar{r}}{lnpars{1 - t} over t},dd t =
Imint_{0}^{largebar{r}}mrm{Li}_{2}'pars{t},dd tqquad
pars{~mrm{Li}_{s} mbox{is the} PolyLogarithm Function~}
\[5mm] implies &
bbx{int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x = Immrm{Li}_{2}pars{expo{-piic/3}} approx -1.0149}
end{align}
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
int_{-pi/6}^{pi/6}lnpars{sinpars{x + pi/6} over cospars{x}},dd x
\[5mm] = &
int_{-pi/6}^{pi/6}lnpars{{root{3} over 2},tanpars{x} + { 1 over 2}}
,dd x
,,,,,,stackrel{large x = arctanpars{2t - 1 over root{3}}}{=},,,
,,,
{root{3} over 2}int_{0}^{1}{lnpars{t} over t^{2} - t + 1},dd t
\[5mm] = &
{root{3} over 2}int_{0}^{1}{lnpars{t} over pars{t - r}pars{t - bar{r}}},dd tlabel{1}tag{1}
end{align}
where $ds{r equiv {1 over 2} + {root{3} over 2},ic = exppars{{pi over 3},ic}}$
eqref{1} is reduced to
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
{root{3} over 2}int_{0}^{1}lnpars{t}
pars{{1 over t - r} - {1 over t - bar{r}}}{1 over r - bar{r}},dd t
\[5mm] = &
{root{3} over 2},{1 over 2ic,Impars{r}},2ic,Imint_{0}^{1}{lnpars{t} over t - r},dd t =
-,Imint_{0}^{1}{lnpars{t} over r - t},dd t =
-,Imint_{0}^{1/r}{lnpars{rt} over 1 - t},dd t
\[5mm] = &
-,Imint_{0}^{largebar{r}}{lnpars{1 - t} over t},dd t =
Imint_{0}^{largebar{r}}mrm{Li}_{2}'pars{t},dd tqquad
pars{~mrm{Li}_{s} mbox{is the} PolyLogarithm Function~}
\[5mm] implies &
bbx{int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x = Immrm{Li}_{2}pars{expo{-piic/3}} approx -1.0149}
end{align}
add a comment |
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
int_{-pi/6}^{pi/6}lnpars{sinpars{x + pi/6} over cospars{x}},dd x
\[5mm] = &
int_{-pi/6}^{pi/6}lnpars{{root{3} over 2},tanpars{x} + { 1 over 2}}
,dd x
,,,,,,stackrel{large x = arctanpars{2t - 1 over root{3}}}{=},,,
,,,
{root{3} over 2}int_{0}^{1}{lnpars{t} over t^{2} - t + 1},dd t
\[5mm] = &
{root{3} over 2}int_{0}^{1}{lnpars{t} over pars{t - r}pars{t - bar{r}}},dd tlabel{1}tag{1}
end{align}
where $ds{r equiv {1 over 2} + {root{3} over 2},ic = exppars{{pi over 3},ic}}$
eqref{1} is reduced to
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
{root{3} over 2}int_{0}^{1}lnpars{t}
pars{{1 over t - r} - {1 over t - bar{r}}}{1 over r - bar{r}},dd t
\[5mm] = &
{root{3} over 2},{1 over 2ic,Impars{r}},2ic,Imint_{0}^{1}{lnpars{t} over t - r},dd t =
-,Imint_{0}^{1}{lnpars{t} over r - t},dd t =
-,Imint_{0}^{1/r}{lnpars{rt} over 1 - t},dd t
\[5mm] = &
-,Imint_{0}^{largebar{r}}{lnpars{1 - t} over t},dd t =
Imint_{0}^{largebar{r}}mrm{Li}_{2}'pars{t},dd tqquad
pars{~mrm{Li}_{s} mbox{is the} PolyLogarithm Function~}
\[5mm] implies &
bbx{int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x = Immrm{Li}_{2}pars{expo{-piic/3}} approx -1.0149}
end{align}
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
int_{-pi/6}^{pi/6}lnpars{sinpars{x + pi/6} over cospars{x}},dd x
\[5mm] = &
int_{-pi/6}^{pi/6}lnpars{{root{3} over 2},tanpars{x} + { 1 over 2}}
,dd x
,,,,,,stackrel{large x = arctanpars{2t - 1 over root{3}}}{=},,,
,,,
{root{3} over 2}int_{0}^{1}{lnpars{t} over t^{2} - t + 1},dd t
\[5mm] = &
{root{3} over 2}int_{0}^{1}{lnpars{t} over pars{t - r}pars{t - bar{r}}},dd tlabel{1}tag{1}
end{align}
where $ds{r equiv {1 over 2} + {root{3} over 2},ic = exppars{{pi over 3},ic}}$
eqref{1} is reduced to
begin{align}
&bbox[10px,#ffd]{ds{%
int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x}} =
{root{3} over 2}int_{0}^{1}lnpars{t}
pars{{1 over t - r} - {1 over t - bar{r}}}{1 over r - bar{r}},dd t
\[5mm] = &
{root{3} over 2},{1 over 2ic,Impars{r}},2ic,Imint_{0}^{1}{lnpars{t} over t - r},dd t =
-,Imint_{0}^{1}{lnpars{t} over r - t},dd t =
-,Imint_{0}^{1/r}{lnpars{rt} over 1 - t},dd t
\[5mm] = &
-,Imint_{0}^{largebar{r}}{lnpars{1 - t} over t},dd t =
Imint_{0}^{largebar{r}}mrm{Li}_{2}'pars{t},dd tqquad
pars{~mrm{Li}_{s} mbox{is the} PolyLogarithm Function~}
\[5mm] implies &
bbx{int_{0}^{pi/3}lnpars{sinpars{x} over sinpars{x + pi/3}},dd x = Immrm{Li}_{2}pars{expo{-piic/3}} approx -1.0149}
end{align}
edited Feb 26 '18 at 22:32
answered Feb 26 '18 at 0:32
Felix MarinFelix Marin
67.2k7107141
67.2k7107141
add a comment |
add a comment |
The given integral can be approached as follows:
$$begin{eqnarray*} mathcal{I}=int_{0}^{pi/3}logleft(frac{sin x}{frac{1}{2}sin x+frac{sqrt{3}}{2}cos x}right),dx&=&frac{pi}{3}log 2-int_{0}^{pi/3}log(1+sqrt{3}cottheta),dtheta\&=&frac{pi}{3}log 2-int_{1/sqrt{3}}^{+infty}frac{log(1+tsqrt{3})}{1+t^2},dt\&=&frac{pi}
{3}log2-int_{0}^{sqrt{3}}frac{logleft(1+frac{sqrt{3}}{t}right)}{1+t^2},dt\&=&frac{pi}{3}log2-sqrt{3}int_{1}^{+infty}frac{log(z+1)}{3+z^2},dz\(text{trigamma})qquad&=&-frac{1}{24sqrt{3}}left(psi'left(tfrac{1}{6}right)+psi'left(tfrac{1}{3}right)-psi'left(tfrac{2}{3}right)-psi'left(tfrac{5}{6}right)right)end{eqnarray*} $$
from which it follows that
$$mathcal{I}=-frac{sqrt{3}}{2}sum_{kgeq 0}left(frac{1}{(6k+1)^2}+frac{1}{(6k+2)^2}-frac{1}{(6k+4)^2}-frac{1}{(6k+5)^2}right).tag{1}$$
We don't have a really nicer closed form, but the terms of the last series behaves like $frac{1}{18k^3}$ for large values of $k$, ensuring a decent speed of convergence of the partial sums. Due to the reflection formulas for the trigamma function we have
$$sum_{kgeq 0}left(frac{1}{(6k+1)^2}color{red}{+}frac{1}{(6k+5)^2}right)=frac{pi^2}{9},qquad sum_{kgeq 0}left(frac{1}{(6k+2)^2}color{red}{+}frac{1}{(6k+4)^2}right)=frac{pi^2}{27} $$
which can be used to devise acceleration tricks, even if the signs pattern in the previous identity is the "wrong" one. Numerically $mathcal{I}approx -1.0149416$.
$(1)$ can be proved also by applying termwise integration to the Fourier series of $logsin(x)$, which is well-known.
add a comment |
The given integral can be approached as follows:
$$begin{eqnarray*} mathcal{I}=int_{0}^{pi/3}logleft(frac{sin x}{frac{1}{2}sin x+frac{sqrt{3}}{2}cos x}right),dx&=&frac{pi}{3}log 2-int_{0}^{pi/3}log(1+sqrt{3}cottheta),dtheta\&=&frac{pi}{3}log 2-int_{1/sqrt{3}}^{+infty}frac{log(1+tsqrt{3})}{1+t^2},dt\&=&frac{pi}
{3}log2-int_{0}^{sqrt{3}}frac{logleft(1+frac{sqrt{3}}{t}right)}{1+t^2},dt\&=&frac{pi}{3}log2-sqrt{3}int_{1}^{+infty}frac{log(z+1)}{3+z^2},dz\(text{trigamma})qquad&=&-frac{1}{24sqrt{3}}left(psi'left(tfrac{1}{6}right)+psi'left(tfrac{1}{3}right)-psi'left(tfrac{2}{3}right)-psi'left(tfrac{5}{6}right)right)end{eqnarray*} $$
from which it follows that
$$mathcal{I}=-frac{sqrt{3}}{2}sum_{kgeq 0}left(frac{1}{(6k+1)^2}+frac{1}{(6k+2)^2}-frac{1}{(6k+4)^2}-frac{1}{(6k+5)^2}right).tag{1}$$
We don't have a really nicer closed form, but the terms of the last series behaves like $frac{1}{18k^3}$ for large values of $k$, ensuring a decent speed of convergence of the partial sums. Due to the reflection formulas for the trigamma function we have
$$sum_{kgeq 0}left(frac{1}{(6k+1)^2}color{red}{+}frac{1}{(6k+5)^2}right)=frac{pi^2}{9},qquad sum_{kgeq 0}left(frac{1}{(6k+2)^2}color{red}{+}frac{1}{(6k+4)^2}right)=frac{pi^2}{27} $$
which can be used to devise acceleration tricks, even if the signs pattern in the previous identity is the "wrong" one. Numerically $mathcal{I}approx -1.0149416$.
$(1)$ can be proved also by applying termwise integration to the Fourier series of $logsin(x)$, which is well-known.
add a comment |
The given integral can be approached as follows:
$$begin{eqnarray*} mathcal{I}=int_{0}^{pi/3}logleft(frac{sin x}{frac{1}{2}sin x+frac{sqrt{3}}{2}cos x}right),dx&=&frac{pi}{3}log 2-int_{0}^{pi/3}log(1+sqrt{3}cottheta),dtheta\&=&frac{pi}{3}log 2-int_{1/sqrt{3}}^{+infty}frac{log(1+tsqrt{3})}{1+t^2},dt\&=&frac{pi}
{3}log2-int_{0}^{sqrt{3}}frac{logleft(1+frac{sqrt{3}}{t}right)}{1+t^2},dt\&=&frac{pi}{3}log2-sqrt{3}int_{1}^{+infty}frac{log(z+1)}{3+z^2},dz\(text{trigamma})qquad&=&-frac{1}{24sqrt{3}}left(psi'left(tfrac{1}{6}right)+psi'left(tfrac{1}{3}right)-psi'left(tfrac{2}{3}right)-psi'left(tfrac{5}{6}right)right)end{eqnarray*} $$
from which it follows that
$$mathcal{I}=-frac{sqrt{3}}{2}sum_{kgeq 0}left(frac{1}{(6k+1)^2}+frac{1}{(6k+2)^2}-frac{1}{(6k+4)^2}-frac{1}{(6k+5)^2}right).tag{1}$$
We don't have a really nicer closed form, but the terms of the last series behaves like $frac{1}{18k^3}$ for large values of $k$, ensuring a decent speed of convergence of the partial sums. Due to the reflection formulas for the trigamma function we have
$$sum_{kgeq 0}left(frac{1}{(6k+1)^2}color{red}{+}frac{1}{(6k+5)^2}right)=frac{pi^2}{9},qquad sum_{kgeq 0}left(frac{1}{(6k+2)^2}color{red}{+}frac{1}{(6k+4)^2}right)=frac{pi^2}{27} $$
which can be used to devise acceleration tricks, even if the signs pattern in the previous identity is the "wrong" one. Numerically $mathcal{I}approx -1.0149416$.
$(1)$ can be proved also by applying termwise integration to the Fourier series of $logsin(x)$, which is well-known.
The given integral can be approached as follows:
$$begin{eqnarray*} mathcal{I}=int_{0}^{pi/3}logleft(frac{sin x}{frac{1}{2}sin x+frac{sqrt{3}}{2}cos x}right),dx&=&frac{pi}{3}log 2-int_{0}^{pi/3}log(1+sqrt{3}cottheta),dtheta\&=&frac{pi}{3}log 2-int_{1/sqrt{3}}^{+infty}frac{log(1+tsqrt{3})}{1+t^2},dt\&=&frac{pi}
{3}log2-int_{0}^{sqrt{3}}frac{logleft(1+frac{sqrt{3}}{t}right)}{1+t^2},dt\&=&frac{pi}{3}log2-sqrt{3}int_{1}^{+infty}frac{log(z+1)}{3+z^2},dz\(text{trigamma})qquad&=&-frac{1}{24sqrt{3}}left(psi'left(tfrac{1}{6}right)+psi'left(tfrac{1}{3}right)-psi'left(tfrac{2}{3}right)-psi'left(tfrac{5}{6}right)right)end{eqnarray*} $$
from which it follows that
$$mathcal{I}=-frac{sqrt{3}}{2}sum_{kgeq 0}left(frac{1}{(6k+1)^2}+frac{1}{(6k+2)^2}-frac{1}{(6k+4)^2}-frac{1}{(6k+5)^2}right).tag{1}$$
We don't have a really nicer closed form, but the terms of the last series behaves like $frac{1}{18k^3}$ for large values of $k$, ensuring a decent speed of convergence of the partial sums. Due to the reflection formulas for the trigamma function we have
$$sum_{kgeq 0}left(frac{1}{(6k+1)^2}color{red}{+}frac{1}{(6k+5)^2}right)=frac{pi^2}{9},qquad sum_{kgeq 0}left(frac{1}{(6k+2)^2}color{red}{+}frac{1}{(6k+4)^2}right)=frac{pi^2}{27} $$
which can be used to devise acceleration tricks, even if the signs pattern in the previous identity is the "wrong" one. Numerically $mathcal{I}approx -1.0149416$.
$(1)$ can be proved also by applying termwise integration to the Fourier series of $logsin(x)$, which is well-known.
edited Feb 25 '18 at 18:49
answered Feb 25 '18 at 17:37
Jack D'AurizioJack D'Aurizio
288k33280659
288k33280659
add a comment |
add a comment |
Hint: $displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x=displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}({mathrm{sin}(x)})dx-int_0^{dfrac{pi}{3}} lnleft({mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x$
This is a hint towards what?
– Jack D'Aurizio
Feb 25 '18 at 17:41
@JackD'Aurizio Toward looking differently at how he could solve his problem because this makes solving the problem easier I believe.
– Mehrdad Zandigohar
Feb 25 '18 at 18:05
I believe that is not true. Both the integrals in the RHS are related to the dilogarithm function evaluated at the third roots of unity. $logfrac{a}{b}=log a-log b$ (for $a,b>0$) is obvious and not really helpful in reaching a "closed" form.
– Jack D'Aurizio
Feb 25 '18 at 18:08
I myself knew how to integrate $ln(sin(x))$ and this made me think this is a better way. It may be obvious but one may make the problem solving easier by this. As omegadot did in his answer too. Anyway, aren't we free to state the things we believe are helpful?
– Mehrdad Zandigohar
Feb 25 '18 at 18:14
Better to be sure they are: comments are best suited for uncertainty. What is $int_{0}^{pi/5}logsin(x),dx$, for instance?
– Jack D'Aurizio
Feb 25 '18 at 18:16
|
show 2 more comments
Hint: $displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x=displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}({mathrm{sin}(x)})dx-int_0^{dfrac{pi}{3}} lnleft({mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x$
This is a hint towards what?
– Jack D'Aurizio
Feb 25 '18 at 17:41
@JackD'Aurizio Toward looking differently at how he could solve his problem because this makes solving the problem easier I believe.
– Mehrdad Zandigohar
Feb 25 '18 at 18:05
I believe that is not true. Both the integrals in the RHS are related to the dilogarithm function evaluated at the third roots of unity. $logfrac{a}{b}=log a-log b$ (for $a,b>0$) is obvious and not really helpful in reaching a "closed" form.
– Jack D'Aurizio
Feb 25 '18 at 18:08
I myself knew how to integrate $ln(sin(x))$ and this made me think this is a better way. It may be obvious but one may make the problem solving easier by this. As omegadot did in his answer too. Anyway, aren't we free to state the things we believe are helpful?
– Mehrdad Zandigohar
Feb 25 '18 at 18:14
Better to be sure they are: comments are best suited for uncertainty. What is $int_{0}^{pi/5}logsin(x),dx$, for instance?
– Jack D'Aurizio
Feb 25 '18 at 18:16
|
show 2 more comments
Hint: $displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x=displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}({mathrm{sin}(x)})dx-int_0^{dfrac{pi}{3}} lnleft({mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x$
Hint: $displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}left(frac{mathrm{sin}(x)}{mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x=displaystyle int_0^{dfrac{pi}{3}}mathrm{ln}({mathrm{sin}(x)})dx-int_0^{dfrac{pi}{3}} lnleft({mathrm{sin}left(x+frac{pi}{3}right)}right) mathrm{d}x$
edited Dec 13 '18 at 9:43
DavidG
1,951620
1,951620
answered Feb 24 '18 at 22:01
Mehrdad ZandigoharMehrdad Zandigohar
1,510216
1,510216
This is a hint towards what?
– Jack D'Aurizio
Feb 25 '18 at 17:41
@JackD'Aurizio Toward looking differently at how he could solve his problem because this makes solving the problem easier I believe.
– Mehrdad Zandigohar
Feb 25 '18 at 18:05
I believe that is not true. Both the integrals in the RHS are related to the dilogarithm function evaluated at the third roots of unity. $logfrac{a}{b}=log a-log b$ (for $a,b>0$) is obvious and not really helpful in reaching a "closed" form.
– Jack D'Aurizio
Feb 25 '18 at 18:08
I myself knew how to integrate $ln(sin(x))$ and this made me think this is a better way. It may be obvious but one may make the problem solving easier by this. As omegadot did in his answer too. Anyway, aren't we free to state the things we believe are helpful?
– Mehrdad Zandigohar
Feb 25 '18 at 18:14
Better to be sure they are: comments are best suited for uncertainty. What is $int_{0}^{pi/5}logsin(x),dx$, for instance?
– Jack D'Aurizio
Feb 25 '18 at 18:16
|
show 2 more comments
This is a hint towards what?
– Jack D'Aurizio
Feb 25 '18 at 17:41
@JackD'Aurizio Toward looking differently at how he could solve his problem because this makes solving the problem easier I believe.
– Mehrdad Zandigohar
Feb 25 '18 at 18:05
I believe that is not true. Both the integrals in the RHS are related to the dilogarithm function evaluated at the third roots of unity. $logfrac{a}{b}=log a-log b$ (for $a,b>0$) is obvious and not really helpful in reaching a "closed" form.
– Jack D'Aurizio
Feb 25 '18 at 18:08
I myself knew how to integrate $ln(sin(x))$ and this made me think this is a better way. It may be obvious but one may make the problem solving easier by this. As omegadot did in his answer too. Anyway, aren't we free to state the things we believe are helpful?
– Mehrdad Zandigohar
Feb 25 '18 at 18:14
Better to be sure they are: comments are best suited for uncertainty. What is $int_{0}^{pi/5}logsin(x),dx$, for instance?
– Jack D'Aurizio
Feb 25 '18 at 18:16
This is a hint towards what?
– Jack D'Aurizio
Feb 25 '18 at 17:41
This is a hint towards what?
– Jack D'Aurizio
Feb 25 '18 at 17:41
@JackD'Aurizio Toward looking differently at how he could solve his problem because this makes solving the problem easier I believe.
– Mehrdad Zandigohar
Feb 25 '18 at 18:05
@JackD'Aurizio Toward looking differently at how he could solve his problem because this makes solving the problem easier I believe.
– Mehrdad Zandigohar
Feb 25 '18 at 18:05
I believe that is not true. Both the integrals in the RHS are related to the dilogarithm function evaluated at the third roots of unity. $logfrac{a}{b}=log a-log b$ (for $a,b>0$) is obvious and not really helpful in reaching a "closed" form.
– Jack D'Aurizio
Feb 25 '18 at 18:08
I believe that is not true. Both the integrals in the RHS are related to the dilogarithm function evaluated at the third roots of unity. $logfrac{a}{b}=log a-log b$ (for $a,b>0$) is obvious and not really helpful in reaching a "closed" form.
– Jack D'Aurizio
Feb 25 '18 at 18:08
I myself knew how to integrate $ln(sin(x))$ and this made me think this is a better way. It may be obvious but one may make the problem solving easier by this. As omegadot did in his answer too. Anyway, aren't we free to state the things we believe are helpful?
– Mehrdad Zandigohar
Feb 25 '18 at 18:14
I myself knew how to integrate $ln(sin(x))$ and this made me think this is a better way. It may be obvious but one may make the problem solving easier by this. As omegadot did in his answer too. Anyway, aren't we free to state the things we believe are helpful?
– Mehrdad Zandigohar
Feb 25 '18 at 18:14
Better to be sure they are: comments are best suited for uncertainty. What is $int_{0}^{pi/5}logsin(x),dx$, for instance?
– Jack D'Aurizio
Feb 25 '18 at 18:16
Better to be sure they are: comments are best suited for uncertainty. What is $int_{0}^{pi/5}logsin(x),dx$, for instance?
– Jack D'Aurizio
Feb 25 '18 at 18:16
|
show 2 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2665211%2fintegral-int-0-frac-pi3-mathrmln-left-frac-mathrmsinx-mathrm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
This is not exactly the same thing, but I think it will help: math.stackexchange.com/questions/305124/…
– Ron Gordon
Feb 25 '18 at 2:30
Please do not use pictures for critical portions of your post. Pictures may not be legible, cannot be searched and are not view-able to some, such as those who use screen readers.
– GNUSupporter 8964民主女神 地下教會
Dec 13 '18 at 9:44