bounding a certain quantity
$begingroup$
Is there a way to bound the following quantity
$$
|sqrt{a_n - b_n} - sqrt{a-b}|
$$
with an expression composed of the expressions $a_n-a$ and $b_n -b$?
inequality
$endgroup$
add a comment |
$begingroup$
Is there a way to bound the following quantity
$$
|sqrt{a_n - b_n} - sqrt{a-b}|
$$
with an expression composed of the expressions $a_n-a$ and $b_n -b$?
inequality
$endgroup$
$begingroup$
Is using $a_n + a$ and $b_n + b$ ok? Because that's possible by squaring and using AM-GM inequality.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:15
$begingroup$
I actually need the differences $a_n - a$ and $b_n - b$ on the right side of the resulting inequality.
$endgroup$
– Julienne Franz
Dec 29 '18 at 4:31
$begingroup$
If this is about sequences then try multiplying top and bottom by the "conjugate" $|sqrt{a_n - b_n} + sqrt{a-b}|$ and use the convergence of $a_n$ and $b_n$ to bound the denominator for sufficiently large $n$.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:40
add a comment |
$begingroup$
Is there a way to bound the following quantity
$$
|sqrt{a_n - b_n} - sqrt{a-b}|
$$
with an expression composed of the expressions $a_n-a$ and $b_n -b$?
inequality
$endgroup$
Is there a way to bound the following quantity
$$
|sqrt{a_n - b_n} - sqrt{a-b}|
$$
with an expression composed of the expressions $a_n-a$ and $b_n -b$?
inequality
inequality
asked Dec 29 '18 at 3:54
Julienne FranzJulienne Franz
1955
1955
$begingroup$
Is using $a_n + a$ and $b_n + b$ ok? Because that's possible by squaring and using AM-GM inequality.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:15
$begingroup$
I actually need the differences $a_n - a$ and $b_n - b$ on the right side of the resulting inequality.
$endgroup$
– Julienne Franz
Dec 29 '18 at 4:31
$begingroup$
If this is about sequences then try multiplying top and bottom by the "conjugate" $|sqrt{a_n - b_n} + sqrt{a-b}|$ and use the convergence of $a_n$ and $b_n$ to bound the denominator for sufficiently large $n$.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:40
add a comment |
$begingroup$
Is using $a_n + a$ and $b_n + b$ ok? Because that's possible by squaring and using AM-GM inequality.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:15
$begingroup$
I actually need the differences $a_n - a$ and $b_n - b$ on the right side of the resulting inequality.
$endgroup$
– Julienne Franz
Dec 29 '18 at 4:31
$begingroup$
If this is about sequences then try multiplying top and bottom by the "conjugate" $|sqrt{a_n - b_n} + sqrt{a-b}|$ and use the convergence of $a_n$ and $b_n$ to bound the denominator for sufficiently large $n$.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:40
$begingroup$
Is using $a_n + a$ and $b_n + b$ ok? Because that's possible by squaring and using AM-GM inequality.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:15
$begingroup$
Is using $a_n + a$ and $b_n + b$ ok? Because that's possible by squaring and using AM-GM inequality.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:15
$begingroup$
I actually need the differences $a_n - a$ and $b_n - b$ on the right side of the resulting inequality.
$endgroup$
– Julienne Franz
Dec 29 '18 at 4:31
$begingroup$
I actually need the differences $a_n - a$ and $b_n - b$ on the right side of the resulting inequality.
$endgroup$
– Julienne Franz
Dec 29 '18 at 4:31
$begingroup$
If this is about sequences then try multiplying top and bottom by the "conjugate" $|sqrt{a_n - b_n} + sqrt{a-b}|$ and use the convergence of $a_n$ and $b_n$ to bound the denominator for sufficiently large $n$.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:40
$begingroup$
If this is about sequences then try multiplying top and bottom by the "conjugate" $|sqrt{a_n - b_n} + sqrt{a-b}|$ and use the convergence of $a_n$ and $b_n$ to bound the denominator for sufficiently large $n$.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:40
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It is bounded by $frac {|a_n-a|+|b_b-a|} {sqrt {|a-b|}}$. You get this multiplying numerator and denominator by $sqrt{a_n-b_n}+sqrt {a-b}$.
$endgroup$
add a comment |
$begingroup$
You can use
$$ |sqrt{x} -sqrt{y}|^2 leqslant |sqrt{x}-sqrt{y}|, |sqrt{x} + sqrt{y}| = |x-y|$$
which implies
$$|sqrt{x}-sqrt{y}| leqslant sqrt{|x-y|}$$
where $x = a_n - b_n$ and $y = a-b$.
Thus,
$$|sqrt{a_n-b_n}-sqrt{a-b}| leqslant sqrt{|(a_n-a)-(b_n-b)|}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055515%2fbounding-a-certain-quantity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is bounded by $frac {|a_n-a|+|b_b-a|} {sqrt {|a-b|}}$. You get this multiplying numerator and denominator by $sqrt{a_n-b_n}+sqrt {a-b}$.
$endgroup$
add a comment |
$begingroup$
It is bounded by $frac {|a_n-a|+|b_b-a|} {sqrt {|a-b|}}$. You get this multiplying numerator and denominator by $sqrt{a_n-b_n}+sqrt {a-b}$.
$endgroup$
add a comment |
$begingroup$
It is bounded by $frac {|a_n-a|+|b_b-a|} {sqrt {|a-b|}}$. You get this multiplying numerator and denominator by $sqrt{a_n-b_n}+sqrt {a-b}$.
$endgroup$
It is bounded by $frac {|a_n-a|+|b_b-a|} {sqrt {|a-b|}}$. You get this multiplying numerator and denominator by $sqrt{a_n-b_n}+sqrt {a-b}$.
answered Dec 29 '18 at 4:58
Kavi Rama MurthyKavi Rama Murthy
61.8k42262
61.8k42262
add a comment |
add a comment |
$begingroup$
You can use
$$ |sqrt{x} -sqrt{y}|^2 leqslant |sqrt{x}-sqrt{y}|, |sqrt{x} + sqrt{y}| = |x-y|$$
which implies
$$|sqrt{x}-sqrt{y}| leqslant sqrt{|x-y|}$$
where $x = a_n - b_n$ and $y = a-b$.
Thus,
$$|sqrt{a_n-b_n}-sqrt{a-b}| leqslant sqrt{|(a_n-a)-(b_n-b)|}$$
$endgroup$
add a comment |
$begingroup$
You can use
$$ |sqrt{x} -sqrt{y}|^2 leqslant |sqrt{x}-sqrt{y}|, |sqrt{x} + sqrt{y}| = |x-y|$$
which implies
$$|sqrt{x}-sqrt{y}| leqslant sqrt{|x-y|}$$
where $x = a_n - b_n$ and $y = a-b$.
Thus,
$$|sqrt{a_n-b_n}-sqrt{a-b}| leqslant sqrt{|(a_n-a)-(b_n-b)|}$$
$endgroup$
add a comment |
$begingroup$
You can use
$$ |sqrt{x} -sqrt{y}|^2 leqslant |sqrt{x}-sqrt{y}|, |sqrt{x} + sqrt{y}| = |x-y|$$
which implies
$$|sqrt{x}-sqrt{y}| leqslant sqrt{|x-y|}$$
where $x = a_n - b_n$ and $y = a-b$.
Thus,
$$|sqrt{a_n-b_n}-sqrt{a-b}| leqslant sqrt{|(a_n-a)-(b_n-b)|}$$
$endgroup$
You can use
$$ |sqrt{x} -sqrt{y}|^2 leqslant |sqrt{x}-sqrt{y}|, |sqrt{x} + sqrt{y}| = |x-y|$$
which implies
$$|sqrt{x}-sqrt{y}| leqslant sqrt{|x-y|}$$
where $x = a_n - b_n$ and $y = a-b$.
Thus,
$$|sqrt{a_n-b_n}-sqrt{a-b}| leqslant sqrt{|(a_n-a)-(b_n-b)|}$$
edited Dec 29 '18 at 5:34
answered Dec 29 '18 at 5:19
RRLRRL
51.7k42573
51.7k42573
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055515%2fbounding-a-certain-quantity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is using $a_n + a$ and $b_n + b$ ok? Because that's possible by squaring and using AM-GM inequality.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:15
$begingroup$
I actually need the differences $a_n - a$ and $b_n - b$ on the right side of the resulting inequality.
$endgroup$
– Julienne Franz
Dec 29 '18 at 4:31
$begingroup$
If this is about sequences then try multiplying top and bottom by the "conjugate" $|sqrt{a_n - b_n} + sqrt{a-b}|$ and use the convergence of $a_n$ and $b_n$ to bound the denominator for sufficiently large $n$.
$endgroup$
– Pratyush Sarkar
Dec 29 '18 at 4:40