How to prove a recurrence with multiple terms?
$begingroup$
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
$endgroup$
add a comment |
$begingroup$
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
$endgroup$
$begingroup$
Use Masters Theorem Directly
$endgroup$
– Rakesh Bhatt
Dec 29 '18 at 3:11
add a comment |
$begingroup$
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
$endgroup$
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
algorithms asymptotics recursive-algorithms recursion
edited Feb 19 '15 at 16:02
Irddo
1,393819
1,393819
asked Feb 12 '15 at 0:37
CheekyKontBrahCheekyKontBrah
511115
511115
$begingroup$
Use Masters Theorem Directly
$endgroup$
– Rakesh Bhatt
Dec 29 '18 at 3:11
add a comment |
$begingroup$
Use Masters Theorem Directly
$endgroup$
– Rakesh Bhatt
Dec 29 '18 at 3:11
$begingroup$
Use Masters Theorem Directly
$endgroup$
– Rakesh Bhatt
Dec 29 '18 at 3:11
$begingroup$
Use Masters Theorem Directly
$endgroup$
– Rakesh Bhatt
Dec 29 '18 at 3:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1144367%2fhow-to-prove-a-recurrence-with-multiple-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
$endgroup$
add a comment |
$begingroup$
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
$endgroup$
add a comment |
$begingroup$
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
$endgroup$
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
answered Feb 19 '15 at 17:07
DanielVDanielV
17.9k42754
17.9k42754
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1144367%2fhow-to-prove-a-recurrence-with-multiple-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Use Masters Theorem Directly
$endgroup$
– Rakesh Bhatt
Dec 29 '18 at 3:11