Bregman divergence and its property
$begingroup$
Suppose, $S$ is a convex set in $mathbb{R^n}$and $ri(S)$ denotes the relative interior set of $S$.For, $x_1in S$ and $x_2,x_3 in ri(S)$ the following property holds
begin{equation}
d_{phi}(x_1,x_3)=d_{phi}(x_1,x_2)+d_{phi}(x_2,x_3)-langle(x_1-x_2)(nabla phi(x_3)-nabla phi(x_2))rangle.
end{equation}
where, $d_{phi}(.,.)$ denotes the Bregman divergence with the convex function $phi$.
Show that, when $x_1,x_2,x_3$ are such that $x_1 in S'$, $S'$ being convex subset of $S$ and $x_2$ is given by
$x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$
then the third term of the previous equation is negative.
Proof: when $x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$ then,
$d_{phi}(x_2,x_3)<d_{phi}(x_1,x_3)$
Now, $phi$ is a convex function,hence $(nabla phi(x_3)-nabla phi(x_2))>0$ whenever $x_3>x_2$. On the other hand,
$(x_1-x_2)>0$ if $x_1>x_2$.Therefore the third term is negative when both $x_1,x_3>x_2$.
But how can I prove it in general??Give me some hint please.
self-learning
$endgroup$
add a comment |
$begingroup$
Suppose, $S$ is a convex set in $mathbb{R^n}$and $ri(S)$ denotes the relative interior set of $S$.For, $x_1in S$ and $x_2,x_3 in ri(S)$ the following property holds
begin{equation}
d_{phi}(x_1,x_3)=d_{phi}(x_1,x_2)+d_{phi}(x_2,x_3)-langle(x_1-x_2)(nabla phi(x_3)-nabla phi(x_2))rangle.
end{equation}
where, $d_{phi}(.,.)$ denotes the Bregman divergence with the convex function $phi$.
Show that, when $x_1,x_2,x_3$ are such that $x_1 in S'$, $S'$ being convex subset of $S$ and $x_2$ is given by
$x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$
then the third term of the previous equation is negative.
Proof: when $x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$ then,
$d_{phi}(x_2,x_3)<d_{phi}(x_1,x_3)$
Now, $phi$ is a convex function,hence $(nabla phi(x_3)-nabla phi(x_2))>0$ whenever $x_3>x_2$. On the other hand,
$(x_1-x_2)>0$ if $x_1>x_2$.Therefore the third term is negative when both $x_1,x_3>x_2$.
But how can I prove it in general??Give me some hint please.
self-learning
$endgroup$
add a comment |
$begingroup$
Suppose, $S$ is a convex set in $mathbb{R^n}$and $ri(S)$ denotes the relative interior set of $S$.For, $x_1in S$ and $x_2,x_3 in ri(S)$ the following property holds
begin{equation}
d_{phi}(x_1,x_3)=d_{phi}(x_1,x_2)+d_{phi}(x_2,x_3)-langle(x_1-x_2)(nabla phi(x_3)-nabla phi(x_2))rangle.
end{equation}
where, $d_{phi}(.,.)$ denotes the Bregman divergence with the convex function $phi$.
Show that, when $x_1,x_2,x_3$ are such that $x_1 in S'$, $S'$ being convex subset of $S$ and $x_2$ is given by
$x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$
then the third term of the previous equation is negative.
Proof: when $x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$ then,
$d_{phi}(x_2,x_3)<d_{phi}(x_1,x_3)$
Now, $phi$ is a convex function,hence $(nabla phi(x_3)-nabla phi(x_2))>0$ whenever $x_3>x_2$. On the other hand,
$(x_1-x_2)>0$ if $x_1>x_2$.Therefore the third term is negative when both $x_1,x_3>x_2$.
But how can I prove it in general??Give me some hint please.
self-learning
$endgroup$
Suppose, $S$ is a convex set in $mathbb{R^n}$and $ri(S)$ denotes the relative interior set of $S$.For, $x_1in S$ and $x_2,x_3 in ri(S)$ the following property holds
begin{equation}
d_{phi}(x_1,x_3)=d_{phi}(x_1,x_2)+d_{phi}(x_2,x_3)-langle(x_1-x_2)(nabla phi(x_3)-nabla phi(x_2))rangle.
end{equation}
where, $d_{phi}(.,.)$ denotes the Bregman divergence with the convex function $phi$.
Show that, when $x_1,x_2,x_3$ are such that $x_1 in S'$, $S'$ being convex subset of $S$ and $x_2$ is given by
$x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$
then the third term of the previous equation is negative.
Proof: when $x_2=rm{argmin} ~{d_{phi}(x,x_3):x in S'}$ then,
$d_{phi}(x_2,x_3)<d_{phi}(x_1,x_3)$
Now, $phi$ is a convex function,hence $(nabla phi(x_3)-nabla phi(x_2))>0$ whenever $x_3>x_2$. On the other hand,
$(x_1-x_2)>0$ if $x_1>x_2$.Therefore the third term is negative when both $x_1,x_3>x_2$.
But how can I prove it in general??Give me some hint please.
self-learning
self-learning
asked Dec 22 '18 at 5:43
Shefali royShefali roy
93
93
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049149%2fbregman-divergence-and-its-property%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049149%2fbregman-divergence-and-its-property%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown