Why does the sign of the second items is negative
$begingroup$
Consider
$$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
My question is why the sign of the second item is negative?
calculus integration
$endgroup$
add a comment |
$begingroup$
Consider
$$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
My question is why the sign of the second item is negative?
calculus integration
$endgroup$
add a comment |
$begingroup$
Consider
$$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
My question is why the sign of the second item is negative?
calculus integration
$endgroup$
Consider
$$int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy= int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
My question is why the sign of the second item is negative?
calculus integration
calculus integration
edited Dec 22 '18 at 7:47
Robert Z
96.1k1065136
96.1k1065136
asked Dec 22 '18 at 6:42
BloodpolyhydronBloodpolyhydron
41
41
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
$endgroup$
add a comment |
$begingroup$
Here is the step-by-step solution:
$$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
&=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$
Refer to the graph:
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049172%2fwhy-does-the-sign-of-the-second-items-is-negative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
$endgroup$
add a comment |
$begingroup$
In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
$endgroup$
add a comment |
$begingroup$
In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
$endgroup$
In the integral on the $LHS$, in the region $pile xle2pi,-1le yle0,y$ ranges from $0tosin(x)$ for any value of $x$. In the corresponding term on the $RHS$, that is $displaystyleint_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx,y$ ranges from $-1to0$, which is the opposite direction. So we add a negative sign:$$-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx=int^{-1}_0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx$$
answered Dec 22 '18 at 7:48
Shubham JohriShubham Johri
5,082717
5,082717
add a comment |
add a comment |
$begingroup$
Here is the step-by-step solution:
$$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
&=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$
Refer to the graph:
$endgroup$
add a comment |
$begingroup$
Here is the step-by-step solution:
$$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
&=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$
Refer to the graph:
$endgroup$
add a comment |
$begingroup$
Here is the step-by-step solution:
$$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
&=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$
Refer to the graph:
$endgroup$
Here is the step-by-step solution:
$$begin{align}int_0^{2pi}dxint_0^{sin(x)} f(x,y)dy&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy+int_{pi}^{2pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy=\
&=int_0^{pi}dxint_0^{color{green}{sin(x)}} f(x,y)dy-int_{pi}^{2pi}dxint_{color{blue}{sin(x)}}^0 f(x,y)dy=\
&=int_0^1dyint_{arcsin(y)}^{pi-arcsin(y)}f(x,y)dx-int_{-1}^0dyint_{pi-arcsin(y)}^{2pi+arcsin(y)}f(x,y)dx.end{align}$$
Refer to the graph:
answered Dec 22 '18 at 8:45
farruhotafarruhota
20.1k2738
20.1k2738
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049172%2fwhy-does-the-sign-of-the-second-items-is-negative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown